Keith R Paton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7324548/publications.pdf

Version: 2024-02-01

23 papers

3,543 citations

16 h-index 642321 23 g-index

23 all docs 23 docs citations

23 times ranked

5998 citing authors

#	Article	IF	CITATIONS
1	Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Materials, 2014, 13, 624-630.	13.3	1,958
2	Large-Scale Production of Size-Controlled MoS ₂ Nanosheets by Shear Exfoliation. Chemistry of Materials, 2015, 27, 1129-1139.	3.2	389
3	Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender. Nanoscale, 2014, 6, 11810-11819.	2.8	241
4	Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets. Nanoscale, 2016, 8, 4311-4323.	2.8	194
5	Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon, 2014, 78, 243-249.	5.4	136
6	Efficient microwave energy absorption by carbon nanotubes. Carbon, 2008, 46, 1935-1941.	5.4	112
7	Biological recognition of graphene nanoflakes. Nature Communications, 2018, 9, 1577.	5.8	75
8	Improving the fracture toughness properties of epoxy using graphene nanoplatelets at low filler content. Nanocomposites, 2017, 3, 85-96.	2.2	74
9	Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers. Materials, 2017, 10, 1179.	1.3	66
10	Ballistic impact behaviour of glass fibre reinforced polymer composite with 1D/2D nanomodified epoxy matrices. Composites Part B: Engineering, 2019, 167, 497-506.	5.9	51
11	Extreme mechanical reinforcement in graphene oxide based thin-film nanocomposites via covalently tailored nanofiller matrix compatibilization. Carbon, 2017, 114, 367-376.	5.4	46
12	Production of few-layer graphene by microfluidization. Materials Research Express, 2017, 4, 025604.	0.8	41
13	Relating the optical absorption coefficient of nanosheet dispersions to the intrinsic monolayer absorption. Carbon, 2016, 107, 733-738.	5.4	35
14	Determining the Level and Location of Functional Groups on Few-Layer Graphene and Their Effect on the Mechanical Properties of Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2020, 12, 13481-13493.	4.0	27
15	On the extent of fracture toughness transfer from 1D/2D nanomodified epoxy matrices to glass fibre composites. Journal of Materials Science, 2020, 55, 4717-4733.	1.7	24
16	Gas physisorption measurements as a quality control tool for the properties of graphene/graphite powders. Carbon, 2020, 167, 585-595.	5.4	16
17	Interplay between oxidative stress and endoplasmic reticulum stress mediated- autophagy in unfunctionalised few-layer graphene-exposed macrophages. 2D Materials, 2018, 5, 045033.	2.0	15
18	Terahertz time-domain spectroscopy as a novel metrology tool for liquid-phase exfoliated few-layer graphene. Nanotechnology, 2019, 30, 025709.	1.3	10

KEITH R PATON

#	Article	IF	CITATION
19	Using nuclear magnetic resonance proton relaxation to probe the surface chemistry of carbon 2D materials. Nanoscale, 2021, 13, 6389-6393.	2.8	8
20	Rapid monitoring of graphene exfoliation using NMR proton relaxation. Nanoscale, 2021, 13, 14518-14524.	2.8	7
21	International interlaboratory comparison of Raman spectroscopic analysis of CVD-grown graphene. 2D Materials, 2022, 9, 035010.	2.0	7
22	Highly Conductive Graphene and Polyelectrolyte Multilayer Thin Films Produced From Aqueous Suspension. Macromolecular Rapid Communications, 2016, 37, 1790-1794.	2.0	6
23	Gas Cluster Ion Beam Cleaning of CVD-Grown Graphene for Use in Electronic Device Fabrication. ACS Applied Nano Materials, 2021, 4, 5187-5197.	2.4	5