
Kristoffer Petersson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7324423/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of Ultra-High Dose-Rate (FLASH) Particle Therapy. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 252-262.	2.7	17
2	The importance of hypoxia in radiotherapy for the immune response, metastatic potential and FLASH-RT. International Journal of Radiation Biology, 2022, 98, 439-451.	1.0	24
3	<i>In vitro</i> assays for investigating the FLASH effect. Expert Reviews in Molecular Medicine, 2022, 24, e10.	1.6	13
4	FLASH irradiation induces lower levels of DNA damage ex vivo, an effect modulated by oxygen tension, dose, and dose rate. British Journal of Radiology, 2022, 95, 20211150.	1.0	19
5	Ultra-high-dose-rate FLASH and Conventional-Dose-Rate Irradiation Differentially Affect Human Acute Lymphoblastic Leukemia and Normal Hematopoiesis. International Journal of Radiation Oncology Biology Physics, 2021, 109, 819-829.	0.4	66
6	Hypofractionated FLASH-RT as an Effective Treatment against Glioblastoma that Reduces Neurocognitive Side Effects in Mice. Clinical Cancer Research, 2021, 27, 775-784.	3.2	144
7	Monitoring electron energies during FLASH irradiations. Physics in Medicine and Biology, 2021, 66, 045015.	1.6	7
8	A focused very high energy electron beam for fractionated stereotactic radiotherapy. Scientific Reports, 2021, 11, 5844.	1.6	15
9	Establishment and Initial Experience of Clinical FLASH Radiotherapy in Canine Cancer Patients. Frontiers in Oncology, 2021, 11, 658004.	1.3	45
10	Cancer Cells Can Exhibit a Sparing FLASH Effect at Low Doses Under Normoxic In Vitro-Conditions. Frontiers in Oncology, 2021, 11, 686142.	1.3	22
11	Irradiation at Ultra-High (FLASH) Dose Rates Reduces Acute Normal Tissue Toxicity in the Mouse Gastrointestinal System. International Journal of Radiation Oncology Biology Physics, 2021, 111, 1250-1261.	0.4	53
12	Faster and more accurate patient positioning with surface guided radiotherapy for ultra-hypofractionated prostate cancer patients. Technical Innovations and Patient Support in Radiation Oncology, 2021, 19, 41-45.	0.6	10
13	Palliative short-course hypofractionated radiotherapy followed by chemotherapy in esophageal adenocarcinoma: the phase II PALAESTRA trial. Acta Oncológica, 2020, 59, 212-218.	0.8	3
14	The FLASH effect depends on oxygen concentration. British Journal of Radiology, 2020, 93, 20190702.	1.0	133
15	A Quantitative Analysis of the Role of Oxygen Tension in FLASH Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2020, 107, 539-547.	0.4	84
16	Understanding High-Dose, Ultra-High Dose Rate, and Spatially Fractionated Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2020, 107, 766-778.	0.4	70
17	Correction for Ion Recombination in a Built-in Monitor Chamber of a Clinical Linear Accelerator at Ultra-High Dose Rates. Radiation Research, 2020, 194, 580-586.	0.7	23

18 FLASH radiotherapy: What, how and why?. , 2020, 2020, 66-69.

KRISTOFFER PETERSSON

#	Article	IF	CITATIONS
19	The Advantage of FLASH Radiotherapy Confirmed in Mini-pig and Cat-cancer Patients. Clinical Cancer Research, 2019, 25, 35-42.	3.2	430
20	Dosimetric and preparation procedures for irradiating biological models with pulsed electron beam at ultra-high dose-rate. Radiotherapy and Oncology, 2019, 139, 34-39.	0.3	92
21	Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10943-10951.	3.3	326
22	Modifying a clinical linear accelerator for delivery of ultra-high dose rate irradiation. Radiotherapy and Oncology, 2019, 139, 40-45.	0.3	125
23	Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool's Gold?. Frontiers in Oncology, 2019, 9, 1563.	1.3	302
24	Analysis of the treatment plan evaluation process in radiotherapy through eye tracking. Zeitschrift Fur Medizinische Physik, 2018, 28, 318-324.	0.6	7
25	High doseâ€perâ€pulse electron beam dosimetry: Commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use. Medical Physics, 2018, 45, 863-874.	1.6	143
26	X-rays can trigger the FLASH effect: Ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice. Radiotherapy and Oncology, 2018, 129, 582-588.	0.3	250
27	A treatment planning comparison of contemporary photon-based radiation techniques for breast cancer. Physics and Imaging in Radiation Oncology, 2018, 7, 32-38.	1.2	8
28	High doseâ€perâ€pulse electron beam dosimetry — A model to correct for the ion recombination in the Advanced Markus ionization chamber. Medical Physics, 2017, 44, 1157-1167.	1.6	141
29	Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s. Radiotherapy and Oncology, 2017, 124, 365-369.	0.3	410
30	High doseâ€perâ€pulse electron beam dosimetry: Usability and doseâ€rate independence of EBT3 Gafchromic films. Medical Physics, 2017, 44, 725-735.	1.6	115
31	A clinical distance measure for evaluating treatment plan quality difference with Pareto fronts in radiotherapy. Physics and Imaging in Radiation Oncology, 2017, 3, 53-56.	1.2	4
32	Discrepancies between selected Pareto optimal plans and final deliverable plans in radiotherapy multi-criteria optimization. Radiotherapy and Oncology, 2016, 120, 346-348.	0.3	17
33	Evaluation of dual-arc VMAT radiotherapy treatment plans automatically generated via dose mimicking. Acta Oncológica, 2016, 55, 523-525.	0.8	17
34	Multi-modality optimisation in radiotherapy treatment planning using composite objective values. Acta Oncológica, 2015, 54, 557-561.	0.8	3
35	Haematological toxicity in adult patients receiving craniospinal irradiation – Indication of a dose-bath effect. Radiotherapy and Oncology, 2014, 111, 47-51.	0.3	21
36	Treatment plan comparison using grading analysis based on clinical judgment. Acta Oncológica, 2013, 52, 645-651.	0.8	8

#	Article	IF	CITATIONS
37	Beam commissioning and measurements validating the beam model in a new TPS that converts helical tomotherapy plans to stepâ€andâ€shoot IMRT plans. Medical Physics, 2011, 38, 40-46.	1.6	6
38	Conversion of helical tomotherapy plans to step-and-shoot IMRT plans-Pareto front evaluation of plans from a new treatment planning system. Medical Physics, 2011, 38, 3130-3138.	1.6	14