
David R Garrod

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7324328/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. Journal of Clinical Investigation, 1999, 104, 123-133.	8.2	638
2	Desmosome structure, composition and function. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 572-587.	2.6	444
3	Mutations in the plakophilin 1 gene result in ectodermal dysplasia/skin fragility syndrome. Nature Genetics, 1997, 17, 240-244.	21.4	363
4	Mast cells disrupt epithelial barrier function during enteric nematode infection. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7761-7766.	7.1	302
5	Desmosomes and hemidesmosomes. Current Opinion in Cell Biology, 1993, 5, 30-40.	5.4	293
6	Desmosomal adhesion regulates epithelial morphogenesis and cell positioning. Nature Cell Biology, 2001, 3, 823-830.	10.3	247
7	Desmosomal cadherins. Current Opinion in Cell Biology, 2002, 14, 537-545.	5.4	198
8	Mice lacking desmocollin 1 show epidermal fragility accompanied by barrier defects and abnormal differentiation. Journal of Cell Biology, 2001, 155, 821-832.	5.2	176
9	Pollen proteolytic enzymes degrade tight junctions. Respirology, 2007, 12, 834-842.	2.3	164
10	Desmosomes: adhesive strength and signalling in health and disease. Biochemical Journal, 2010, 429, 419-433.	3.7	158
11	The α Isoform of Protein Kinase C Is Involved in Signaling the Response of Desmosomes to Wounding in Cultured Epithelial Cells. Molecular Biology of the Cell, 2000, 11, 1077-1092.	2.1	156
12	Desmosomes: differentiation, development, dynamics and disease. Current Opinion in Cell Biology, 1996, 8, 670-678.	5.4	148
13	Interferon-Î ³ selectively increases epithelial permeability to large molecules by activating different populations of paracellular pores. Journal of Cell Science, 2005, 118, 5221-5230.	2.0	146
14	Desmosomal adhesion: structural basis, molecular mechanism and regulation (Review). Molecular Membrane Biology, 2002, 19, 81-94.	2.0	140
15	Hyper-adhesion in desmosomes: its regulation in wound healing and possible relationship to cadherin crystal structure. Journal of Cell Science, 2005, 118, 5743-5754.	2.0	132
16	Antidesmosomal monoclonal antibody in the diagnosis of intracranial tumours. Journal of Pathology, 1987, 153, 265-273.	4.5	116
17	Induction of Early Stages of Kidney Tubule Differentiation by Lithium Ions. Developmental Biology, 1995, 167, 50-60.	2.0	115
18	Suprabasal Desmoglein 3 Expression in the Epidermis of Transgenic Mice Results in Hyperproliferation and Abnormal Differentiation. Molecular and Cellular Biology, 2002, 22, 5846-5858.	2.3	104

DAVID R GARROD

#	Article	IF	CITATIONS
19	Tissue section AFM: In situ ultrastructural imaging of native biomolecules. Matrix Biology, 2010, 29, 254-260.	3.6	98
20	Calcium-Independent Desmosomes of Keratinocytes are Hyper-Adhesive. Journal of Investigative Dermatology, 2007, 127, 775-781.	0.7	92
21	Immunohistochemical study of desmosomes in oral squamous cell carcinoma: correlation with cytokeratin and E-cadherin staining, and with tumour behaviour. Journal of Pathology, 1998, 184, 369-381.	4.5	87
22	Class specific inhibition of house dust mite proteinases which cleave cell adhesion, induce cell death and which increase the permeability of lung epithelium. British Journal of Pharmacology, 1998, 124, 1048-1059.	5.4	79
23	Membrane-impermeable Cross-linking Provides Evidence for Homophilic, Isoform-specific Binding of Desmosomal Cadherins in Epithelial Cells. Journal of Biological Chemistry, 2011, 286, 2143-2154.	3.4	66
24	Direct evidence that PKCα positively regulates wound reâ€epithelialization: correlation with changes in desmosomal adhesiveness. Journal of Pathology, 2012, 227, 346-356.	4.5	66
25	Desmosomal Cadherin Misexpression Alters β-Catenin Stability and Epidermal Differentiation. Molecular and Cellular Biology, 2005, 25, 969-978.	2.3	65
26	The cell adhesion molecule nectin-1 is critical for normal enamel formation in mice. Human Molecular Genetics, 2008, 17, 3509-3520.	2.9	62
27	Monoclonal antibody to desmosomal glycoprotein 1—A new epithelial marker for diagnostic pathology. Journal of Pathology, 1987, 153, 365-375.	4.5	60
28	Desmoglein 3, via an Interaction with E-cadherin, Is Associated with Activation of Src. PLoS ONE, 2010, 5, e14211.	2.5	58
29	A novel Nrf2-miR-29-desmocollin-2 axis regulates desmosome function in keratinocytes. Nature Communications, 2014, 5, 5099.	12.8	58
30	Nonâ€junctional human desmoglein 3 acts as an upstream regulator of Src in Eâ€cadherin adhesion, a pathway possibly involved in the pathogenesis of pemphigus vulgaris. Journal of Pathology, 2012, 227, 81-93.	4.5	52
31	EphB2 and EphB3 forward signalling are required for palate development. Mechanisms of Development, 2009, 126, 230-239.	1.7	50
32	Hyper-adhesion: a new concept in cell–cell adhesion. Biochemical Society Transactions, 2008, 36, 195-201.	3.4	49
33	An Adult Passive Transfer Mouse Model to Study Desmoglein 3 Signaling in Pemphigus Vulgaris. Journal of Investigative Dermatology, 2012, 132, 346-355.	0.7	44
34	Tight junction proteins and the epidermis. Experimental Dermatology, 2011, 20, 88-91.	2.9	40
35	Expression of Full-Length Desmosomal Glycoproteins (Desmocollins) Is Not Sufficient to Confer Strong Adhesion on Transfected L929 Cells. Journal of Investigative Dermatology, 1996, 106, 689-695.	0.7	39
36	Changing pattern of desmocollin 3 expression accompanies epidermal organisation during skin		37

development. , 1997, 210, 315-327.

DAVID R GARROD

#	Article	IF	CITATIONS
37	Cadherin flexibility provides a key difference between desmosomes and adherens junctions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5395-5400.	7.1	37
38	Desmosomes In Vivo. Dermatology Research and Practice, 2010, 2010, 1-17.	0.8	32
39	Desmosomal cadherins in zebrafish epiboly and gastrulation. BMC Developmental Biology, 2012, 12, 1.	2.1	32
40	Desmosomal Adhesion In Vivo. Cell Communication and Adhesion, 2014, 21, 65-75.	1.0	31
41	Regulation of desmocollin gene expression in the epidermis: CCAAT/enhancer-binding proteins modulate early and late events in keratinocyte differentiation. Biochemical Journal, 2004, 380, 757-765.	3.7	30
42	Controlled laser texturing of titanium results in reliable osteointegration. Journal of Orthopaedic Research, 2017, 35, 820-828.	2.3	30
43	Stroma Regulates Increased Epithelial Lateral Cell Adhesion in 3D Culture: A Role for Actin/Cadherin Dynamics. PLoS ONE, 2011, 6, e18796.	2.5	29
44	Desmosomal adhesiveness is developmentally regulated in the mouse embryo and modulated during trophectoderm migration. Developmental Biology, 2012, 369, 286-297.	2.0	26
45	Hyper-adhesion: A Unique Property of Desmosomes. Cell Communication and Adhesion, 2014, 21, 249-256.	1.0	26
46	Down-Regulation of Desmosomes in Cultured Cells: The Roles of PKC, Microtubules and Lysosomal/Proteasomal Degradation. PLoS ONE, 2014, 9, e108570.	2.5	24
47	Activation of protein kinase C modulates cell-cell and cell-substratum adhesion of a human colorectal carcinoma cell line and restores ?normal? epithelial morphology. , 1999, 80, 455-464.		22
48	Pervanadate stabilizes desmosomes. Cell Adhesion and Migration, 2008, 2, 161-166.	2.7	22
49	Innate generation of thrombin and intracellular oxidants in airway epithelium by allergen Der p 1. Journal of Allergy and Clinical Immunology, 2016, 138, 1224-1227.	2.9	21
50	Desmocollin 1 is abundantly expressed in atherosclerosis and impairs high-density lipoprotein biogenesis. European Heart Journal, 2018, 39, 1194-1202.	2.2	21
51	Calcium induces differentiation of primary human salivary acinar cells. Journal of Cellular Physiology, 2002, 193, 55-63.	4.1	17
52	Allergen-dependent oxidant formation requires purinoceptor activation of ADAM 10 and prothrombin. Journal of Allergy and Clinical Immunology, 2017, 139, 2023-2026.e9.	2.9	16
53	Perinuclear and Cytoplasmic Distribution of Desmoglein in Esophageal Squamous Cell Carcinomas. Pathology Research and Practice, 2001, 197, 85-91.	2.3	15
54	Desmosome dualism – most of the junction is stable, but a plakophilin moiety is persistently dynamic. Journal of Cell Science, 2021, 134, .	2.0	13

DAVID R GARROD

#	Article	IF	CITATIONS
55	Pathways of airway oxidant formation by house dust mite allergens and viral RNA converge through myosin motors, pannexons and Tollâ€kike receptor 4. Immunity, Inflammation and Disease, 2018, 6, 276-296.	2.7	11
56	Allergen Delivery Inhibitors: Characterisation of Potent and Selective Inhibitors of Der p 1 and Their Attenuation of Airway Responses to House Dust Mite Allergens. International Journal of Molecular Sciences, 2018, 19, 3166.	4.1	11
57	Chapter 18 Visualization of Desmosomes in the Electron Microscope. Methods in Cell Biology, 2008, 88, 347-366.	1.1	9
58	The Assay that Defines Desmosome Hyper-Adhesion. Journal of Investigative Dermatology, 2013, 133, 577-578.	0.7	9
59	Desmosomal Adhesion. Advances in Molecular and Cell Biology, 1999, , 165-202.	0.1	8
60	Desmoplakin Is Essential for Epidermal Sheet Formation. Journal of Investigative Dermatology, 2007, 127, E12.	0.7	5
61	Future inhaled drugs by virtual innovation: allergen delivery inhibitors. Future Medicinal Chemistry, 2011, 3, 1567-1570.	2.3	5
62	Pancreatic ductal adenocarcinoma cells employ integrin α6β4 to form hemidesmosomes and regulate cell proliferation. Matrix Biology, 2022, 110, 16-39.	3.6	5
63	Specific inductive flypaper. BioEssays, 1986, 5, 172-173.	2.5	3
64	Intercellular junctions in normal epidermis. Experimental Dermatology, 2004, 13, 652-653.	2.9	1
65	A 4kb Fragment of the Desmocollin 3 Promoter Directs Reporter Gene Expression to Parakeratotic Epidermis and Primary Hair Follicles. Journal of Investigative Dermatology, 2007, 127, 245-247.	0.7	1
66	Desmosomal Cadherins. , 2016, , 159-193.		1
67	Cytoskeleton-attached membrane protein of Dictyostelium discoideum is absent from phagocytosis mutant. Biochemical Society Transactions, 1987, 15, 850-850.	3.4	Ο
68	Correction: Desmosomal cadherins in zebrafish epiboly and gastrulation. BMC Developmental Biology, 2014, 14, 13.	2.1	0