
Vladimir Gogvadze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7324208/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induction and Detection of. Methods in Molecular Biology, 2022, 2445, 227-239.	0.9	1
2	Analysis of Mitochondrial Dysfunction During Cell Death. Methods in Molecular Biology, 2021, 2276, 215-225.	0.9	6
3	Apoptosis is not conserved in plants as revealed by critical examination of a model for plant apoptosis-like cell death. BMC Biology, 2021, 19, 100.	3.8	15
4	Receptor-Mediated Mitophagy Rescues Cancer Cells under Hypoxic Conditions. Cancers, 2021, 13, 4027.	3.7	11
5	Modeling hypoxia facilitates cancer cell survival through downregulation of p53 expression. Chemico-Biological Interactions, 2021, 345, 109553.	4.0	7
6	Distinct effects of etoposide on glutamine-addicted neuroblastoma. Cellular and Molecular Life Sciences, 2020, 77, 1197-1207.	5.4	6
7	Desmin mutations result in mitochondrial dysfunction regardless of their aggregation properties. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165745.	3.8	24
8	To Eat or to Die: Deciphering Selective Forms of Autophagy. Trends in Biochemical Sciences, 2020, 45, 347-364.	7.5	71
9	Cationic gold nanoparticles elicit mitochondrial dysfunction: a multi-omics study. Scientific Reports, 2019, 9, 4366.	3.3	54
10	Cell death-based treatment of neuroblastoma. Cell Death and Disease, 2018, 9, 113.	6.3	34
11	Suppressed translation as a mechanism of initiation of CASP8 (caspase 8)-dependent apoptosis in autophagy-deficient NSCLC cells under nutrient limitation. Autophagy, 2018, 14, 252-268.	9.1	18
12	2â€Deoxyâ€Dâ€glucose has distinct and cell lineâ€specific effects on the survival of different cancer cells upon antitumor drug treatment. FEBS Journal, 2018, 285, 4590-4601.	4.7	27
13	Mitophagy: Link to cancer development and therapy. Biochemical and Biophysical Research Communications, 2017, 482, 432-439.	2.1	98
14	Contrasting effects of glutamine deprivation on apoptosis induced by conventionally used anticancer drugs. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 498-506.	4.1	15
15	Mitochondria-targeted betulinic and ursolic acid derivatives: synthesis and anticancer activity. MedChemComm, 2017, 8, 1934-1945.	3.4	54
16	Involvement of autophagy in the outcome of mitotic catastrophe. Scientific Reports, 2017, 7, 14571.	3.3	31
17	Targeting succinate:ubiquinone reductase potentiates the efficacy of anticancer therapy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2065-2071.	4.1	22
18	In one harness: the interplay of cellular responses and subsequent cell fate after quantum dot uptake. Nanomedicine, 2016, 11, 2603-2615.	3.3	5

VLADIMIR GOGVADZE

#	Article	IF	CITATIONS
19	Reactive oxygen species regulate a balance between mitotic catastrophe and apoptosis. International Journal of Biochemistry and Cell Biology, 2016, 81, 133-136.	2.8	6
20	Mitotic catastrophe and cancer drug resistance: A link that must to be broken. Drug Resistance Updates, 2016, 24, 1-12.	14.4	79
21	Expression and Function of mARC: Roles in Lipogenesis and Metabolic Activation of Ximelagatran. PLoS ONE, 2015, 10, e0138487.	2.5	25
22	Calcium and mitochondria in the regulation of cell death. Biochemical and Biophysical Research Communications, 2015, 460, 72-81.	2.1	402
23	Analysis of Mitochondrial Dysfunction During Cell Death. Methods in Molecular Biology, 2015, 1264, 385-393.	0.9	8
24	Sorafenib-induced defective autophagy promotes cell death by necroptosis. Oncotarget, 2015, 6, 37066-37082.	1.8	53
25	Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments. Nature Communications, 2014, 5, 3295.	12.8	197
26	Targeting mitochondria by α-tocopheryl succinate overcomes hypoxia-mediated tumor cell resistance to treatment. Cellular and Molecular Life Sciences, 2014, 71, 2325-2333.	5.4	15
27	Mitochondria $\hat{a} \in$ " a bullseye in cancer therapy. Mitochondrion, 2014, 19, 1-2.	3.4	4
28	Mitochondrial substrates in cancer: Drivers or passengers?. Mitochondrion, 2014, 19, 8-19.	3.4	14
29	Contrasting effects of α-tocopheryl succinate on cisplatin- and etoposide-induced apoptosis. Mitochondrion, 2013, 13, 533-538.	3.4	13
30	Citrate kills tumor cells through activation of apical caspases. Cellular and Molecular Life Sciences, 2012, 69, 4229-4237.	5.4	37
31	Targeting mitochondria by α-tocopheryl succinate kills neuroblastoma cells irrespective of MycN oncogene expression. Cellular and Molecular Life Sciences, 2012, 69, 2091-2099.	5.4	19
32	Targeting Mitochondria in Fighting Cancer. Current Pharmaceutical Design, 2011, 17, 4034-4046.	1.9	55
33	Involvement of Ca ²⁺ and ROS in αâ€ŧocopheryl succinateâ€induced mitochondrial permeabilization. International Journal of Cancer, 2010, 127, 1823-1832.	5.1	51
34	The Warburg effect and mitochondrial stability in cancer cells. Molecular Aspects of Medicine, 2010, 31, 60-74.	6.4	181
35	Mitochondria as targets for cancer chemotherapy. Seminars in Cancer Biology, 2009, 19, 57-66.	9.6	146
36	Mitochondria as targets for chemotherapy. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 624-640.	4.9	113

3

VLADIMIR GOGVADZE

#	Article	IF	CITATIONS
37	Mitochondria in cancer cells: what is so special about them?. Trends in Cell Biology, 2008, 18, 165-173.	7.9	555
38	Mitochondrial Oxidative Stress: Implications for Cell Death. Annual Review of Pharmacology and Toxicology, 2007, 47, 143-183.	9.4	1,068
39	Alteration of mitochondrial function and cell sensitization to death. Journal of Bioenergetics and Biomembranes, 2007, 39, 23-30.	2.3	32
40	Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 639-647.	1.0	375
41	Peroxiredoxin V is essential for protection against apoptosis in human lung carcinoma cells. Experimental Cell Research, 2006, 312, 2806-2815.	2.6	64
42	Mitochondrial regulation of apoptotic cell death. Chemico-Biological Interactions, 2006, 163, 4-14.	4.0	104
43	Bax and Bak are required for cytochrome c release during arsenic trioxide-induced apoptosis. Cancer Biology and Therapy, 2005, 4, 465-473.	3.4	65
44	Mitochondrial cytochrome c release may occur by volume-dependent mechanisms not involving permeability transition. Biochemical Journal, 2004, 378, 213-217.	3.7	56
45	Analysis of Mitochondrial Dysfunction During Cell Death. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2004, 19, Unit2.10.	1.1	2
46	Analysis of Mitochondrial Dysfunction During Cell Death. Current Protocols in Cell Biology, 2003, 19, Unit 18.5.	2.3	11
47	Tributyltin Causes Cytochrome c Release from Isolated Mitochondria by Two Discrete Mechanisms. Biochemical and Biophysical Research Communications, 2002, 292, 904-908.	2.1	20
48	Fas-triggered phosphatidylserine exposure is modulated by intracellular ATP. FEBS Letters, 2002, 519, 153-158.	2.8	60
49	Cytochrome c release from mitochondria proceeds by a two-step process. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1259-1263.	7.1	873
50	A folding variant of human α-lactalbumin induces mitochondrial permeability transition in isolated mitochondria. FEBS Journal, 2001, 268, 186-191.	0.2	81
51	Cytochrome c Release Occurs via Ca2+-dependent and Ca2+-independent Mechanisms That Are Regulated by Bax. Journal of Biological Chemistry, 2001, 276, 19066-19071.	3.4	187
52	Distinct Pathways for Stimulation of Cytochrome cRelease by Etoposide. Journal of Biological Chemistry, 2000, 275, 32438-32443.	3.4	133
53	Dissociation of Phagocyte Recognition of Cells Undergoing Apoptosis from Other Features of the Apoptotic Program. Journal of Biological Chemistry, 1998, 273, 15628-15632.	3.4	70
54	Control of the pyridine nucleotide-linked Ca2+ release from mitochondria by respiratory substrates. Cell Calcium, 1996, 19, 521-526.	2.4	9