Shalin H Naik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7323788/publications.pdf

Version: 2024-02-01

117453 189595 8,849 51 34 50 citations h-index g-index papers 60 60 60 11835 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Non-genetic determinants of malignant clonal fitness at single-cell resolution. Nature, 2022, 601, 125-131.	13.7	71
2	Death by differentiation: CD4+ TÂcells kick out suspicious stem cells. Cell Stem Cell, 2022, 29, 655-656.	5.2	1
3	Transcriptomic Profiling of Human Pluripotent Stem Cell-derived Retinal Pigment Epithelium over Time. Genomics, Proteomics and Bioinformatics, 2021, 19, 223-242.	3.0	25
4	Single-cell analyses reveal the clonal and molecular aetiology of Flt3L-induced emergency dendritic cell development. Nature Cell Biology, 2021, 23, 219-231.	4.6	22
5	Clonal multi-omics reveals Bcor as a negative regulator of emergency dendritic cell development. Immunity, 2021, 54, 1338-1351.e9.	6.6	25
6	Spatial omics and multiplexed imaging to explore cancer biology. Nature Methods, 2021, 18, 997-1012.	9.0	279
7	A new lymphoid-primed progenitor marked by Dach1 downregulation identified with single cell multi-omics. Nature Immunology, 2020, 21, 1574-1584.	7.0	20
8	Membrane budding is a major mechanism of in vivo platelet biogenesis. Journal of Experimental Medicine, 2020, 217, .	4.2	47
9	Unique properties of a subset of human pluripotent stem cells with high capacity for self-renewal. Nature Communications, 2020, 11, 2420.	5.8	29
10	Dendritic cell development at a clonal level within a revised †continuous' model of haematopoiesis. Molecular Immunology, 2020, 124, 190-197.	1.0	10
11	RelB suppresses type I Interferon signaling in dendritic cells. Cellular Immunology, 2020, 349, 104043.	1.4	13
12	Interconversion between Tumorigenic and Differentiated States in Acute Myeloid Leukemia. Cell Stem Cell, 2019, 25, 258-272.e9.	5.2	60
13	Benchmarking single cell RNA-sequencing analysis pipelines using mixture control experiments. Nature Methods, 2019, 16, 479-487.	9.0	259
14	Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia. Nature Communications, 2019, 10, 2723.	5.8	126
15	Barcoding reveals complex clonal behavior in patient-derived xenografts of metastatic triple negative breast cancer. Nature Communications, 2019, 10, 766.	5.8	99
16	A divergent transcriptional landscape underpins the development and functional branching of MAIT cells. Science Immunology, 2019, 4, .	5.6	75
17	Transcription Factor PU.1 Promotes Conventional Dendritic Cell Identity and Function via Induction of Transcriptional Regulator DC-SCRIPT. Immunity, 2019, 50, 77-90.e5.	6.6	59
18	DiSNE Movie Visualization and Assessment of Clonal Kinetics Reveal Multiple Trajectories of Dendritic Cell Development. Cell Reports, 2018, 22, 2557-2566.	2.9	33

#	Article	IF	CITATIONS
19	scPipe: A flexible R/Bioconductor preprocessing pipeline for single-cell RNA-sequencing data. PLoS Computational Biology, 2018, 14, e1006361.	1.5	97
20	Editorial: Dendritic Cell and Macrophage Nomenclature and Classification. Frontiers in Immunology, 2016, 7, 168.	2.2	25
21	Site-specific recombinatorics: in situ cellular barcoding with the Cre Lox system. BMC Systems Biology, 2016, 10, 43.	3.0	15
22	Deciphering the Innate Lymphoid Cell Transcriptional Program. Cell Reports, 2016, 17, 436-447.	2.9	131
23	Reproducibility of Illumina platform deep sequencing errors allows accurate determination of DNA barcodes in cells. BMC Bioinformatics, 2016, 17, 151.	1.2	14
24	Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nature Immunology, 2015, 16, 718-728.	7.0	475
25	Toward defining a †lineage' – The case for dendritic cells. Seminars in Cell and Developmental Biology, 2015, 41, 3-8.	2.3	8
26	Segmentation of occluded hematopoietic stem cells from tracking. , 2014, 2014, 5510-3.		6
27	Determining Lineage Pathways from Cellular Barcoding Experiments. Cell Reports, 2014, 6, 617-624.	2.9	40
28	Cellular barcoding: A technical appraisal. Experimental Hematology, 2014, 42, 598-608.	0.2	65
29	Lymphoid Tissue and Plasmacytoid Dendritic Cells and Macrophages Do Not Share a Common Macrophage-Dendritic Cell-Restricted Progenitor. Immunity, 2014, 41, 104-115.	6.6	105
30	Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nature Reviews Immunology, 2014, 14, 571-578.	10.6	1,494
31	Plasmacytoid Dendritic Cell Development. Advances in Immunology, 2013, 120, 105-126.	1.1	43
32	Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature, 2013, 496, 229-232.	13.7	337
33	Heterogeneous Differentiation Patterns of Individual CD8 ⁺ T Cells. Science, 2013, 340, 635-639.	6.0	320
34	Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. Journal of Experimental Medicine, 2010, 207, 391-404.	4.2	232
35	The invariant chain transports TNF family member CD70 to MHC class II compartments in dendritic cells. Journal of Cell Science, 2010, 123, 3817-3827.	1.2	23
36	CD8+, CD8â^', and Plasmacytoid Dendritic Cell Generation In Vitro Using flt3 Ligand. Methods in Molecular Biology, 2010, 595, 167-176.	0.4	62

#	Article	IF	CITATIONS
37	Generation of Large Numbers of Pro-DCs and Pre-DCs In Vitro. Methods in Molecular Biology, 2010, 595, 177-186.	0.4	9
38	Costimulatory ligand CD70 allows induction of CD8+ T-cell immunity by immature dendritic cells in a vaccination setting. Blood, 2009, 113, 5167-5175.	0.6	59
39	Homeostasis of dendritic cells in lymphoid organs is controlled by regulation of their precursors via a feedback loop. Blood, 2009, 114, 4411-4421.	0.6	41
40	Demystifying the development of dendritic cell subtypes, a little. Immunology and Cell Biology, 2008, 86, 439-452.	1.0	137
41	Normal proportion and expression of maturation markers in migratory dendritic cells in the absence of germs or Tollâ€ike receptor signaling. Immunology and Cell Biology, 2008, 86, 200-205.	1.0	90
42	Dendritic cells in the thymus contribute to T-regulatory cell induction. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19869-19874.	3.3	265
43	Differential Development of Murine Dendritic Cells by GM-CSF versus Flt3 Ligand Has Implications for Inflammation and Trafficking. Journal of Immunology, 2007, 179, 7577-7584.	0.4	336
44	Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nature Immunology, 2007, 8, 1217-1226.	7.0	713
45	Steady-state and inflammatory dendritic-cell development. Nature Reviews Immunology, 2007, 7, 19-30.	10.6	1,036
46	Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nature Immunology, 2006, 7, 663-671.	7.0	531
47	Development of murine plasmacytoid dendritic cell subsets. Immunology and Cell Biology, 2005, 83, 563-570.	1.0	32
48	Cutting Edge: Generation of Splenic CD8+ and CD8â° Dendritic Cell Equivalents in Fms-Like Tyrosine Kinase 3 Ligand Bone Marrow Cultures. Journal of Immunology, 2005, 174, 6592-6597.	0.4	491
49	The Molecular Basis for the Lack of Immunostimulatory Activity of Vertebrate DNA. Journal of Immunology, 2003, 170, 3614-3620.	0.4	164
50	CD8α+ mouse spleen dendritic cells do not originate from the CD8α- dendritic cell subset. Blood, 2003, 102, 601-604.	0.6	56
51	Phosphorothioate Backbone Modification Modulates Macrophage Activation by CpG DNA. Journal of Immunology, 2000, 165, 4165-4173.	0.4	116