Yang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7323587/publications.pdf Version: 2024-02-01

VANC VANC

#	Article	IF	CITATIONS
1	Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. New England Journal of Medicine, 2020, 382, 1199-1207.	13.9	12,326
2	Recent Advancements in Flexible and Stretchable Electrodes for Electromechanical Sensors: Strategies, Materials, and Features. ACS Applied Materials & Interfaces, 2017, 9, 12147-12164.	4.0	359
3	Reduced Graphene Oxide Conformally Wrapped Silver Nanowire Networks for Flexible Transparent Heating and Electromagnetic Interference Shielding. ACS Nano, 2020, 14, 8754-8765.	7.3	135
4	Facile fabrication of stretchable Ag nanowire/polyurethane electrodes using high intensity pulsed light. Nano Research, 2016, 9, 401-414.	5.8	128
5	Low-temperature and pressureless sinter joining of Cu with micron/submicron Ag particle paste in air. Journal of Alloys and Compounds, 2019, 780, 435-442.	2.8	98
6	Stretchable sensors for environmental monitoring. Applied Physics Reviews, 2019, 6, .	5.5	83
7	Alloying and Embedding of Cu-Core/Ag-Shell Nanowires for Ultrastable Stretchable and Transparent Electrodes. ACS Applied Materials & Interfaces, 2019, 11, 18540-18547.	4.0	45
8	Large-Scale and Galvanic Replacement Free Synthesis of Cu@Ag Core–Shell Nanowires for Flexible Electronics. Inorganic Chemistry, 2019, 58, 3374-3381.	1.9	44
9	Good Practices for Rechargeable Lithium Metal Batteries. Journal of the Electrochemical Society, 2019, 166, A4141-A4149.	1.3	42
10	Arbitrarily Shaped 2.5D Circuits using Stretchable Interconnects Embedded in Thermoplastic Polymers. Advanced Engineering Materials, 2017, 19, 1700032.	1.6	40
11	Design and fabrication of a flexible dielectric sensor system for in situ and real-time production monitoring of glass fibre reinforced composites. Sensors and Actuators A: Physical, 2016, 243, 103-110.	2.0	39
12	Fully embedded CuNWs/PDMS conductor with high oxidation resistance and high conductivity for stretchable electronics. Journal of Materials Science, 2019, 54, 6381-6392.	1.7	33
13	Highly Stable Transparent Conductive Electrodes Based on Silver–Platinum Alloy-Walled Hollow Nanowires for Optoelectronic Devices. ACS Applied Materials & Interfaces, 2018, 10, 36128-36135.	4.0	30
14	Multifunctional and miniaturized flexible sensor patch: Design and application for in situ monitoring of epoxy polymerization. Sensors and Actuators B: Chemical, 2018, 261, 144-152.	4.0	29
15	3D Multifunctional Composites Based on Largeâ€Area Stretchable Circuit with Thermoforming Technology. Advanced Electronic Materials, 2018, 4, 1800071.	2.6	27
16	Highly Conductive Ag Paste for Recoverable Wiring and Reliable Bonding Used in Stretchable Electronics. ACS Applied Materials & Interfaces, 2019, 11, 3231-3240.	4.0	27
17	Design and Integration of Flexible Sensor Matrix for in Situ Monitoring of Polymer Composites. ACS Sensors, 2018, 3, 1698-1705.	4.0	24
18	Ultra-Long-Term Reliable Encapsulation Using an Atomic Layer Deposited HfO2/Al2O3/HfO2 Triple-Interlayer for Biomedical Implants. Coatings, 2019, 9, 579.	1.2	22

YANG YANG

#	Article	IF	CITATIONS
19	Arbitrarily Shaped 2.5D Circuits Using Stretchable Interconnections and Embedding in Thermoplastic Polymers. Procedia Technology, 2014, 15, 208-215.	1.1	21
20	Development of a Dielectric Sensor System for the On-line Cure Monitoring of Composites. Procedia Technology, 2014, 15, 631-637.	1.1	18
21	RTM Production Monitoring of the A380 Hinge Arm Droop Nose Mechanism: A Multi-Sensor Approach. Sensors, 2016, 16, 866.	2.1	18
22	Design and fabrication of a shielded interdigital sensor for noninvasive <i>In situ</i> real-time production monitoring of polymers. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2028-2037.	2.4	18
23	Highly Densified Cu Wirings Fabricated from Airâ€Stable Cu Complex Ink with High Conductivity, Enhanced Oxidation Resistance, and Flexibility. Advanced Materials Interfaces, 2018, 5, 1800798.	1.9	18
24	A tube-shaped solid–liquid-interfaced triboelectric–electromagnetic hybrid nanogenerator for efficient ocean wave energy harvesting. Nano Energy, 2022, 100, 107540.	8.2	15
25	Monitoring the Stateâ€ofâ€Charge of a Vanadium Redox Flow Battery with the Acoustic Attenuation Coefficient: An In Operando Noninvasive Method. Small Methods, 2019, 3, 1900494.	4.6	14
26	Three-Dimensional Stretchable and Transparent Conductors with Controllable Strain-Distribution Based on Template-Assisted Transfer Printing. ACS Applied Materials & Interfaces, 2019, 11, 2140-2148.	4.0	13
27	Lab-on-a-Fish: Wireless, Miniaturized, Fully Integrated, Implantable Biotelemetric Tag for Real-Time <i>In Vivo</i> Monitoring of Aquatic Animals. IEEE Internet of Things Journal, 2022, 9, 10751-10762.	5.5	12
28	A simple transmission dynamics model for predicting the evolution of COVID-19 under control measures in China. Epidemiology and Infection, 2021, 149, e43.	1.0	8
29	Fully Integrated Flexible Dielectric Monitoring Sensor System for Real-Time <i>In Situ</i> Prediction of the Degree of Cure and Glass Transition Temperature of an Epoxy Resin. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-9.	2.4	7
30	One-time deformable thermoplastic devices based on flexible circuit board technology. , 2016, , .		6
31	Free-form 2.5D thermoplastic circuits using one-time stretchable interconnections. Materials Research Society Symposia Proceedings, 2015, 1798, 1.	0.1	4
32	Capacitive sensor network for composites production monitoring. , 2016, , .		2
33	Stretchable Mold Interconnect Optimization: Peeling Automation and Carrierless Techniques. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9, 955-962.	1.4	2
34	Soft and Stretchable Electronics Design. , 2023, , 258-286.		2
35	Deformable Microsystem for In Situ Cure Degree Monitoring of GFRP (Glass Fiber Reinforced Plastic). Materials Research Society Symposia Proceedings, 2015, 1798, 1.	0.1	0
36	Design and implementation of a real-time underwater acoustic telemetry system for fish behavior study and environmental sensing. , 2019, , .		0

#	Article	IF	CITATIONS
37	Harvesting wave energy to power acoustic transmitters using triboelectric nanogenerator. , 2022, , .		0