James Gardiner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7323430/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Î ² -Peptidic Peptidomimetics. Accounts of Chemical Research, 2008, 41, 1366-1375.	7.6	640
2	Emerging rules for effective antimicrobial coatings. Trends in Biotechnology, 2014, 32, 82-90.	4.9	257
3	Fluoropolymers: Origin, Production, and Industrial and Commercial Applications. Australian Journal of Chemistry, 2015, 68, 13.	0.5	158
4	Imaging of a β-peptide distribution in whole-body mice sections by MALDI mass spectrometry. Journal of the American Society for Mass Spectrometry, 2007, 18, 1921-1924.	1.2	84
5	Interaction of α-and β-Oligoarginine-Acids and Amides with Anionic Lipid Vesicles:  A Mechanistic and Thermodynamic Study. Biochemistry, 2006, 45, 5817-5829.	1.2	69
6	Synthesis, Structure, and Biological Applications of <i>î±</i> â€Fluorinated <i>î²</i> â€Amino Acids and Derivatives. Chemistry and Biodiversity, 2012, 9, 2410-2441.	1.0	57
7	Synthesis and biological evaluation of phosphatidylinositol phosphate affinity probes. Organic and Biomolecular Chemistry, 2010, 8, 66-76.	1.5	56
8	Enzymatic Degradation ofβ- and Mixedα,β-Oligopeptides. Chemistry and Biodiversity, 2006, 3, 1325-1348.	1.0	55
9	NMRâ€Solution Structures of Fluoroâ€Substituted <i>β</i> â€Peptides: A <i>3</i> sub>14â€Helix and a Hairpin Turn. The First Case of a 90° OCF Dihedral Angle in an <i>î±</i> â€Fluoroâ€Amide Group. Helvetica Chimica Acta, 2007, 90, 2251-2273.	1.0	55
10	New Open hain and Cyclic Tetrapeptides, Consisting of <i>α</i> â€; <i>β</i> ² â€; and <i>β</i> ³ â€Aminoâ€Acid Residues, as Somatostatin Mimics – A Survey. Helvetica Chimica Acta, 2008, 91, 1736-1786.	1.0	53
11	Synthesis of Cyclic β-Amino Acid Esters from Methionine, Allylglycine, and Serine. Journal of Organic Chemistry, 2004, 69, 3375-3382.	1.7	50
12	Use of Catalytic Static Mixers for Continuous Flow Gas–Liquid and Transfer Hydrogenations in Organic Synthesis. Organic Process Research and Development, 2017, 21, 1311-1319.	1.3	50
13	2â€Nitroveratryl as a Photocleavable Thiolâ€Protecting Group for Directed Disulfide Bond Formation in the Chemical Synthesis of Insulin. Chemistry - A European Journal, 2014, 20, 9549-9552.	1.7	48
14	Dithiocarbamate RAFT agents with broad applicability – the 3,5-dimethyl-1H-pyrazole-1-carbodithioates. Polymer Chemistry, 2016, 7, 481-492.	1.9	48
15	Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups. Scientific Reports, 2017, 7, 43947.	1.6	46
16	Permeation of a β-heptapeptide derivative across phospholipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2726-2736.	1.4	45
17	Total Chemical Synthesis of an Intraâ€Aâ€Chain Cystathionine Human Insulin Analogue with Enhanced Thermal Stability. Angewandte Chemie - International Edition, 2016, 55, 14743-14747.	7.2	45
18	Solution Structures of β Peptides from Raman Optical Activity. Angewandte Chemie - International Edition, 2008, 47, 6392-6394.	7.2	39

JAMES GARDINER

#	Article	IF	CITATIONS
19	Catalytic Static Mixers for the Continuous Flow Hydrogenation of a Key Intermediate of Linezolid (Zyvox). Organic Process Research and Development, 2018, 22, 1448-1452.	1.3	39
20	Enantioselective Synthesis of α-Fluorinated β2-Amino Acids. Organic Letters, 2008, 10, 885-887.	2.4	36
21	Continuous flow photo-initiated RAFT polymerisation using a tubular photochemical reactor. European Polymer Journal, 2016, 80, 200-207.	2.6	36
22	Rational design of a hexapeptide hydrogelator for controlled-release drug delivery. Journal of Materials Chemistry B, 2015, 3, 759-765.	2.9	32
23	ADME Investigations of Unnatural Peptides: Distribution of a ¹⁴ C‣abeled <i>β</i> ³ â€Octaarginine in Rats. Chemistry and Biodiversity, 2007, 4, 1413-1437.	1.0	31
24	Synthesis of Substituted Cyclohexenyl-Based β-Amino Acids by Ring-Closing Metathesis. Organic Letters, 2002, 4, 3663-3666.	2.4	30
25	Mixed α/β-Peptides as a Class of Short Amphipathic Peptide Hydrogelators with Enhanced Proteolytic Stability. Biomacromolecules, 2016, 17, 437-445.	2.6	30
26	On the Terminal Homologation of Physiologically Active Peptides as a Means of Increasing Stability in Human Serum – Neurotensin, Opiorphin, B27â€KK10 Epitope, NPY. Chemistry and Biodiversity, 2011, 8, 711-739.	1.0	29
27	4-Halogeno-3,5-dimethyl-1 <i>H</i> -pyrazole-1-carbodithioates: versatile reversible addition fragmentation chain transfer agents with broad applicability. Polymer International, 2017, 66, 1438-1447.	1.6	28
28	Injectable peptide hydrogels for controlled-release of opioids. MedChemComm, 2016, 7, 542-549.	3.5	27
29	Continuous Flow Synthesis of a Zr Magnetic Framework Composite for Post ombustion CO ₂ Capture. Chemistry - A European Journal, 2019, 25, 13184-13188.	1.7	27
30	Injectable peptide-based hydrogel formulations for the extended inÂvivo release of opioids. Materials Today Chemistry, 2017, 3, 49-59.	1.7	23
31	Synthesis and X-ray structure of a 1,2,3,6-tetrahydropyridine-based phenylalanine mimetic. Tetrahedron Letters, 1998, 39, 9563-9566.	0.7	19
32	βâ€Aminopeptidase atalyzed Biotransformations of β ² â€Dipeptides: Kinetic Resolution and Enzymatic Coupling. ChemBioChem, 2010, 11, 1129-1136.	1.3	18
33	Low Fouling Electrospun Scaffolds with Clicked Bioactive Peptides for Specific Cell Attachment. Biomacromolecules, 2015, 16, 2109-2118.	2.6	18
34	Total Chemical Synthesis of an Intraâ€Aâ€Chain Cystathionine Human Insulin Analogue with Enhanced Thermal Stability. Angewandte Chemie, 2016, 128, 14963-14967.	1.6	18
35	Reductive aminations using a 3D printed supported metal(0) catalyst system. Journal of Flow Chemistry, 2018, 8, 81-88.	1.2	18
36	Synthesis and Highâ€Resolution NMR Structure of a <i>β</i> ³ â€Octapeptide with and without a Tether Introduced by Olefin Metathesis. Helvetica Chimica Acta, 2009, 92, 2643-2658.	1.0	17

JAMES GARDINER

#	Article	IF	CITATIONS
37	Synthesis of Lactam-Based Peptidomimetics from β-Keto Esters and β-Keto Amides. Journal of Organic Chemistry, 1999, 64, 9668-9672.	1.7	16
38	Preparation of Forced Gradient Copolymers Using Tubeâ€inâ€Tube Continuous Flow Reactors. Macromolecular Reaction Engineering, 2017, 11, 1600065.	0.9	15
39	Comparison of Permeation through Phosphatidylcholine Bilayers ofN-Dipicolinyl-α- and -β-Oligopeptides. Chemistry and Biodiversity, 2006, 3, 1181-1201.	1.0	14
40	Investigation of the Interactions ofβ-Peptides with DNA Duplexes by Circular Dichroism Spectroscopy. Helvetica Chimica Acta, 2006, 89, 3087-3103.	1.0	14
41	Monitoring the Early Stage Self-Assembly of Enzyme-Assisted Peptide Hydrogels. Australian Journal of Chemistry, 2013, 66, 572.	0.5	14
42	Ring closing metathesis of α- and β-amino acid derived dienes. Journal of Organometallic Chemistry, 2006, 691, 5487-5496.	0.8	13
43	Total Chemical Synthesis of a Heterodimeric Interchain Bis-Lactam-Linked Peptide: Application to an Analogue of Human Insulin-Like Peptide 3. International Journal of Peptides, 2013, 2013, 1-8.	0.7	13
44	A diastereoselective synthesis of the tetrahydropyridazinone core of 2-oxo-1,6-diazobicyclo[4.3.0]nonane-9-carboxylate-based peptidomimetics starting from (S)-phenylalanine. Tetrahedron Letters, 2003, 44, 4227-4230.	0.7	12
45	Inversion of the Configuration of a Single Stereocenter in a βâ€Heptapeptide Leads to Drastic Changes in its Interaction with Phospholipid Bilayers. ChemBioChem, 2009, 10, 1978-1981.	1.3	12
46	<i>β</i> â€Peptide Conjugates: Syntheses and CD and NMR Investigations of <i>β</i> / <i>α</i> â€Chimeric Peptides, of a DPAâ€ <i>β</i> â€Decapeptide, and of a PEGylated <i>β</i> â€Heptapeptide. Helvetica Chimica Ac 2009, 92, 2698-2721.	ta,1.0	12
47	Synthesis and solid state conformation of phenylalanine mimetics constrained in a proline-like conformation. Organic and Biomolecular Chemistry, 2004, 2, 2365.	1.5	10
48	Polymerizable Peptide Copolymer Coatings for the Control of Biointerfacial Interactions. Biomacromolecules, 2014, 15, 2265-2273.	2.6	9
49	Analysis of cellular phosphatidylinositol (3,4,5)-trisphosphate levels and distribution using confocal fluorescent microscopy. Analytical Biochemistry, 2010, 406, 41-50.	1.1	8
50	Immobilisation of a thrombopoietin peptidic mimic by self-assembled monolayers for culture of CD34+ cells. Biomaterials, 2015, 37, 82-93.	5.7	8
51	Synthesis and X-ray structure of functionalised proline mimics. Arkivoc, 2004, 2004, 46-52.	0.3	8
52	<i>In Situ</i> Investigation of Multicomponent MOF Crystallization during Rapid Continuous Flow Synthesis. ACS Applied Materials & amp; Interfaces, 2021, 13, 54284-54293.	4.0	8
53	The Enantiomer of Octreotate Binds to All Five Somatostatin Receptors with Almost Equal Micromolar Affinity – A Comparison with <i>SANDOSTATIN</i> [®] . Chemistry and Biodiversity, 2008, 5, 1213-1224.	1.0	7
54	Interactions of human embryonic stem cellâ€derived cardiovascular progenitor cells with immobilized extracellular matrix proteins. Journal of Biomedical Materials Research - Part A, 2017, 105, 1094-1104.	2.1	6

JAMES GARDINER

#	Article	IF	CITATIONS
55	β-Aminopeptidases: Insight into Enzymes without a Known Natural Substrate. Applied and Environmental Microbiology, 2019, 85, .	1.4	6
56	Immobilisation of Multiple Ligands Using Peptide Nucleic Acids: A Strategy to Prepare the Microenvironment for Cell Culture. ChemistrySelect, 2017, 2, 4028-4032.	0.7	1
57	Synthesis of Substituted Cyclohexenyl-Based β-Amino Acids by Ring-Closing Metathesis ChemInform, 2003, 34, no.	0.1	Ο
58	The 42 nd EUCHEM Conference on Stereochemistry (Bürgenstock-Conference 2007), Fürigen, April 14–20, 2007. Chimia, 2007, 61, 378-383.	0.3	0
59	Development of ligand-immobilised surfaces for ex vivo expansion of haemopoietic stem cells. Experimental Hematology, 2013, 41, S67.	0.2	Ο
60	Cover Image, Volume 66, Issue 11. Polymer International, 2017, 66, i-i.	1.6	0