
Bowen Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7323106/publications.pdf Version: 2024-02-01

ROWEN WANC

#	Article	IF	CITATIONS
1	Design and Output Characteristics of Ultrasonic Transducer Based on Rare-Earth Giant Magnetostrictive Material. IEEE Transactions on Magnetics, 2022, 58, 1-6.	2.1	0
2	Design of Manipulator System with Tactile Sensor Arrays Based on the Demand of Frail Older People. Lecture Notes in Electrical Engineering, 2022, , 65-72.	0.4	0
3	Magnetostrictive Tactile Sensor Array for Robotic Grasping. Lecture Notes in Electrical Engineering, 2022, , 599-606.	0.4	Ο
4	Design and Characterization of High-Sensitivity Magnetostrictive Tactile Sensor Array. IEEE Sensors Journal, 2022, 22, 4004-4013.	4.7	11
5	Magnetostrictive Tactile Sensor Array Based on L-Shaped Galfenol Wire and Application for Tilt Detection. IEEE Sensors Journal, 2022, 22, 12645-12655.	4.7	6
6	Biomimetic Tactile Sensor Array Based on Magnetostrictive Materials. IEEE Sensors Journal, 2021, 21, 13116-13124.	4.7	22
7	Model and Design of High-Temperature Ultrasonic Sensors for Detecting Position and Temperature Based on Iron-Based Magnetostrictive Wires. IEEE Sensors Journal, 2021, 21, 26868-26877.	4.7	7
8	Cross-modal learning for material perception using deep extreme learning machine. International Journal of Machine Learning and Cybernetics, 2020, 11, 813-823.	3.6	4
9	Cross-Modal Material Perception for Novel Objects: A Deep Adversarial Learning Method. IEEE Transactions on Automation Science and Engineering, 2020, 17, 697-707.	5.2	11
10	Magnetostrictive tactile sensor of detecting friction and normal force for object recognition. International Journal of Advanced Robotic Systems, 2020, 17, 172988142093232.	2.1	5
11	A Magnetostrictive Tactile Sensing Unit and the Integration of Sensor Array for Intelligent Manipulator. IEEE Access, 2020, 8, 187848-187857.	4.2	4
12	Magnetostrictive tactile sensor array for force and stiffness detection. Journal of Magnetism and Magnetic Materials, 2020, 513, 167068.	2.3	17
13	A Novel Three-Axial Force Tactile Sensor Based on the Fringing Effect of Electric Field. IEEE Transactions on Magnetics, 2019, 55, 1-5.	2.1	4
14	High-Frequency Output Characteristics of Giant Magnetostrictive Transducer. IEEE Transactions on Magnetics, 2019, 55, 1-5.	2.1	41
15	Cross-Modal Surface Material Retrieval Using Discriminant Adversarial Learning. IEEE Transactions on Industrial Informatics, 2019, 15, 4978-4987.	11.3	22
16	Bio-Inspired Magnetostrictive Tactile Sensor for Surface Material Recognition. IEEE Transactions on Magnetics, 2019, 55, 1-7.	2.1	18
17	Magnetostrictive Tactile Sensor Array for Object Recognition. IEEE Transactions on Magnetics, 2019, 55, 1-7.	2.1	10
18	Open-Environment Robotic Acoustic Perception for Object Recognition. Frontiers in Neurorobotics, 2019. 13. 96.	2.8	22

BOWEN WANG

#	Article	IF	CITATIONS
19	Design and Output Characteristics of Magnetostrictive Tactile Sensor for Detecting Force and Stiffness of Manipulated Objects. IEEE Transactions on Industrial Informatics, 2019, 15, 1219-1225.	11.3	37
20	Structural design and output characteristic analysis of magnetostrictive tactile sensor for robotic applications. AIP Advances, 2018, 8, 056622.	1.3	8
21	Modeling and analysis of Galfenol cantilever vibration energy harvester with nonlinear magnetic force. AIP Advances, 2018, 8, 056718.	1.3	5
22	The output voltage model and experiment of magnetostrictive displacement sensor based on Weidemann effect. AIP Advances, 2018, 8, .	1.3	6
23	Experimental and Calculating Analysis of High-Frequency Magnetic Energy Losses for Terfenol-D Magnetostrictive Material. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	14
24	Modified J-A model and parameter identification based on data mining. Journal of Intelligent and Fuzzy Systems, 2018, 35, 461-468.	1.4	5
25	Detection and Identification of Object Based on a Magnetostrictive Tactile Sensing System. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	3
26	The output characteristic of cantilever-like tactile sensor based on the inverse magnetostrictive effect. AIP Advances, 2017, 7, .	1.3	10
27	Multifield Coupling Model With Dynamic Losses for Giant Magnetostrictive Transducer. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	8
28	The Output Characteristics of Galfenol Magnetostrictive Displacement Sensor Under the Helical Magnetic Field and Stress. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	8
29	Optimal Discrete Driving Strategy for Magnetostrictive Impact Drive Mechanism. Journal of Computational and Theoretical Nanoscience. 2016. 13, 7926-7932.	0.4	0