
Flu00e1via L Ribeiro-Gomes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7322956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Whole blood transfusion improves vascular integrity and increases survival in artemether-treated experimental cerebral malaria. Scientific Reports, 2021, 11, 12077.	1.6	4
2	Thymic Microenvironment Is Modified by Malnutrition and Leishmania infantum Infection. Frontiers in Cellular and Infection Microbiology, 2019, 9, 252.	1.8	25
3	Long-term effect of uncomplicated Plasmodium berghei ANKA malaria on memory and anxiety-like behaviour in C57BL/6 mice. Parasites and Vectors, 2018, 11, 191.	1.0	19
4	All-Trans Retinoic Acid Promotes an M1- to M2-Phenotype Shift and Inhibits Macrophage-Mediated Immunity to Leishmania major. Frontiers in Immunology, 2017, 8, 1560.	2.2	61
5	Divergent roles for Ly6C+CCR2+CX3CR1+ inflammatory monocytes during primary or secondary infection of the skin with the intra-phagosomal pathogen Leishmania major. PLoS Pathogens, 2017, 13, e1006479.	2.1	77
6	The Nlrp3 inflammasome, ILâ€1β, and neutrophil recruitment are required for susceptibility to a nonhealing strain of <i>Leishmania major</i> in C57BL/6 mice. European Journal of Immunology, 2016, 46, 897-911.	1.6	120
7	Apoptotic cell clearance of Leishmania major-infected neutrophils by dendritic cells inhibits CD8+ T-cell priming in vitro by Mer tyrosine kinase-dependent signaling. Cell Death and Disease, 2015, 6, e2018-e2018.	2.7	43
8	Helminth Infection Alters IgE Responses to Allergens Structurally Related to Parasite Proteins. Journal of Immunology, 2015, 194, 93-100.	0.4	22
9	Infection with Leishmania major Induces a Cellular Stress Response in Macrophages. PLoS ONE, 2014, 9, e85715.	1.1	39
10	Cross-species genetic exchange between visceral and cutaneous strains of <i>Leishmania</i> in the sand fly vector. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16808-16813.	3.3	76
11	Inhibition of caspase-8 activity promotes protective Th1- and Th2-mediated immunity to Leishmania major infection. Journal of Leukocyte Biology, 2014, 95, 347-355.	1.5	12
12	Site-Dependent Recruitment of Inflammatory Cells Determines the Effective Dose of Leishmania major. Infection and Immunity, 2014, 82, 2713-2727.	1.0	63
13	Tracking antigen <i>â€</i> specific CD4 ⁺ T cells throughout the course of chronic <i>Leishmania major</i> infection in resistant mice. European Journal of Immunology, 2013, 43, 427-438.	1.6	29
14	Efficient Capture of Infected Neutrophils by Dendritic Cells in the Skin Inhibits the Early Anti-Leishmania Response. PLoS Pathogens, 2012, 8, e1002536.	2.1	173
15	IL-10 Limits Parasite Burden and Protects against Fatal Myocarditis in a Mouse Model ofTrypanosoma cruziInfection. Journal of Immunology, 2012, 188, 649-660.	0.4	83
16	Evaluation of Recombinant <i>Leishmania</i> Polyprotein Plus Glucopyranosyl Lipid A Stable Emulsion Vaccines against Sand Fly-Transmitted <i>Leishmania major</i> in C57BL/6 Mice. Journal of Immunology, 2012, 189, 4832-4841.	0.4	56
17	Molecular mimicry between cockroach and helminth glutathione S-transferases promotes cross-reactivity and cross-sensitization. Journal of Allergy and Clinical Immunology, 2012, 130, 248-256.e9.	1.5	55
18	The influence of early neutrophil-Leishmania interactions on the host immune response to infection. Frontiers in Cellular and Infection Microbiology, 2012, 2, 59.	1.8	123

#	Article	IF	CITATIONS
19	Myeloid-derived suppressor cells help protective immunity to <i>Leishmania major</i> infection despite suppressed T cell responses. Journal of Leukocyte Biology, 2011, 90, 1191-1197.	1.5	53
20	Proinflammatory Clearance of Apoptotic Neutrophils Induces an IL-12lowIL-10high Regulatory Phenotype in Macrophages. Journal of Immunology, 2010, 185, 2044-2050.	0.4	182
21	Monocytes/macrophages infected with <i>Toxoplasma gondii</i> do not increase coâ€stimulatory molecules while maintaining their migratory ability. Apmis, 2009, 117, 672-680.	0.9	6
22	Influence of parasite encoded inhibitors of serine peptidases in early infection of macrophages with <i>Leishmania major</i> . Cellular Microbiology, 2009, 11, 106-120.	1.1	47
23	Targeting caspases in intracellular protozoan infections. Immunopharmacology and Immunotoxicology, 2009, 31, 159-173.	1.1	15
24	Interactions with apoptotic but not with necrotic neutrophils increase parasite burden in human macrophages infected with <i>Leishmania amazonensis</i> . Journal of Leukocyte Biology, 2008, 84, 389-396.	1.5	76
25	Inhibition of caspase-8 activity reduces IFN-gamma expression by T cells from Leishmania major infection. Anais Da Academia Brasileira De Ciencias, 2008, 80, 129-136.	0.3	6
26	Neutrophils Activate Macrophages for Intracellular Killing of <i>Leishmania major</i> through Recruitment of TLR4 by Neutrophil Elastase. Journal of Immunology, 2007, 179, 3988-3994.	0.4	128
27	The Fas death pathway controls coordinated expansions of type 1 CD8 and type 2 CD4 T cells inTrypanosoma cruziinfection. Journal of Leukocyte Biology, 2007, 81, 942-951.	1.5	37
28	Cross-talk between apoptosis and cytokines in the regulation of parasitic infection. Cytokine and Growth Factor Reviews, 2007, 18, 97-105.	3.2	18
29	Caspase inhibition reduces lymphocyte apoptosis and improves host immune responses toTrypanosoma cruzi infection. European Journal of Immunology, 2007, 37, 738-746.	1.6	30
30	Neutrophils, apoptosis and phagocytic clearance: an innate sequence of cellular responses regulating intramacrophagic parasite infections. Parasitology, 2006, 132, S61-S68.	0.7	31
31	Caspase-8 Activity Prevents Type 2 Cytokine Responses and Is Required for Protective T Cell-Mediated Immunity against <i>Trypanosoma cruzi</i> Infection. Journal of Immunology, 2005, 174, 6314-6321.	0.4	38
32	Turnover of Neutrophils Mediated by Fas Ligand DrivesLeishmania majorInfection. Journal of Infectious Diseases, 2005, 192, 1127-1134.	1.9	29
33	Macrophage Interactions with Neutrophils Regulate <i>Leishmania major</i> Infection. Journal of Immunology, 2004, 172, 4454-4462.	0.4	200
34	Reduction in adhesiveness to extracellular matrix components, modulation of adhesion molecules and in vivo migration of murine macrophages infected with Toxoplasma gondii. Microbes and Infection, 2004, 6, 1287-1296.	1.0	59