Liang-Jun Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7322918/publications.pdf Version: 2024-02-01

LIANC-IUN YIN

#	Article	IF	CITATIONS
1	Facile Synthesis of Fe ₃ 0 ₄ /GCs Composites and Their Enhanced Microwave Absorption Properties. ACS Applied Materials & Interfaces, 2016, 8, 6101-6109.	8.0	518
2	Heterostructured Nanorings of Feâ^'Fe ₃ O ₄ @C Hybrid with Enhanced Microwave Absorption Performance. ACS Applied Materials & Interfaces, 2018, 10, 9369-9378.	8.0	244
3	Plasma-induced FeSiAl@Al2O3@SiO2 core–shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chemical Engineering Journal, 2020, 384, 123371.	12.7	161
4	High-Temperature Oxidation-Resistant ZrN _{0.4} B _{0.6} /SiC Nanohybrid for Enhanced Microwave Absorption. ACS Applied Materials & Interfaces, 2019, 11, 15869-15880.	8.0	150
5	Hybrid silica-carbon bilayers anchoring on FeSiAl surface with bifunctions of enhanced anti-corrosion and microwave absorption. Carbon, 2021, 173, 185-193.	10.3	114
6	Atomic-Scale Layer-by-Layer Deposition of FeSiAl@ZnO@Al2O3 Hybrid with Threshold Anti-Corrosion and Ultra-High Microwave Absorption Properties in Low-Frequency Bands. Nano-Micro Letters, 2021, 13, 161.	27.0	103
7	Porous Eleocharis@MnPE Layered Hybrid for Synergistic Adsorption and Catalytic Biodegradation of Toxic Azo Dyes from Industrial Wastewater. Environmental Science & Technology, 2019, 53, 2161-2170.	10.0	102
8	3D Hollow Quasi-Graphite Capsules/Polyaniline Hybrid with a High Performance for Room-Temperature Ammonia Gas Sensors. ACS Sensors, 2019, 4, 2343-2350.	7.8	64
9	High Thermal Stability and Photoluminescence of Si–N odoped BaMgAl ₁₀ 0 ₁₇ :Eu ²⁺ Phosphors. Journal of the American Ceramic Society, 2010, 93, 1534-1536.	3.8	59
10	<i>In Vivo</i> and <i>In Vitro</i> Monitoring of Amyloid Aggregation via BSA@FGQDs Multimodal Probe. ACS Sensors, 2019, 4, 200-210.	7.8	54
11	Bifunctional carbon-encapsulated FeSiAl hybrid flakes for enhanced microwave absorption properties and analysis of corrosion resistance. Journal of Alloys and Compounds, 2020, 828, 154079.	5.5	53
12	Facile Synthesis of Three-Dimensional Sandwiched MnO ₂ @GCs@MnO ₂ Hybrid Nanostructured Electrode for Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2017, 9, 18872-18882.	8.0	52
13	Enhanced Optical Performance of BaMgAl ₁₀ O ₁₇ :Eu ²⁺ Phosphor by a Novel Method of Carbon Coating. Journal of Physical Chemistry C, 2016, 120, 2355-2361.	3.1	51
14	Synthesis and photoluminescence of Eu2+–Mg2+ co-doped γ-AlON phosphors. Materials Letters, 2009, 63, 1511-1513.	2.6	45
15	Preparation and microwave-absorbing property of BaFe ₁₂ O ₁₉ nanoparticles and BaFe ₁₂ O ₁₉ /Fe ₃ C/CNTs composites. RSC Advances, 2015, 5, 91665-91669.	3.6	42
16	Synthesis of high-purity CuO nanoleaves and analysis of their ethanol gas sensing properties. RSC Advances, 2015, 5, 34788-34794.	3.6	39
17	Enhancing the luminescent efficiency of Y3Al5O12:Ce3+ by coating graphitic carbon nitride: Toward white light-emitting diodes. Journal of Alloys and Compounds, 2019, 801, 10-18.	5.5	37
18	Highly Stable Redâ€Emitting Sr ₂ Si ₅ N ₈ :Eu ²⁺ Phosphor with a Hydrophobic Surface. Journal of the American Ceramic Society, 2017, 100, 257-264.	3.8	34

LIANG-JUN YIN

#	Article	IF	CITATIONS
19	Europium location in the AlN: Eu green phosphor prepared by a gas-reduction-nitridation route. Journal of Applied Physics, 2012, 111, .	2.5	31
20	Intriguing luminescence properties of (Ba, Sr)3Si6O9N4: Eu2+ phosphors via modifying synthesis method and cation substitution. Journal of Alloys and Compounds, 2016, 682, 481-488.	5.5	31
21	Synthesis of Eu ²⁺ â€Doped AlN Phosphors by Carbothermal Reduction. Journal of the American Ceramic Society, 2010, 93, 1702-1707.	3.8	30
22	Preparation of Sr _{1â^'<i>x</i>} Ca _{<i>x</i>} LiAl ₃ N ₄ Eu ²⁺ Solid Solutions and Their Photoluminescence Properties. Journal of the American Ceramic Society, 2016, 99, 3273-3279.	3.8	28
23	Vapor–Dissociation–Solid Growth of Three-Dimensional Graphite-like Capsules with Delicate Morphology and Atomic-level Thickness Control. Crystal Growth and Design, 2016, 16, 5040-5048.	3.0	27
24	Inorganic/organic bilayer of silica/acrylic polyurethane decorating FeSiAl for enhanced anti-corrosive microwave absorption. Applied Surface Science, 2021, 567, 150829.	6.1	27
25	Enhanced thermal degradation stability of the Sr ₂ Si ₅ N ₈ :Eu ²⁺ phosphor by ultra-thin Al ₂ O ₃ coating through the atomic layer deposition technique in a fluidized bed reactor, lournal of Materials Chemistry C. 2019. 7. 5772-5781.	5.5	26
26	Self-Supported Ceramic Electrode of 1T-2H MoS ₂ Grown on the TiC Membrane for Hydrogen Production. Chemistry of Materials, 2021, 33, 6217-6226.	6.7	26
27	A novel strategy to motivate the luminescence efficiency of a phosphor: drilling nanoholes on the surface. Chemical Communications, 2018, 54, 3480-3483.	4.1	25
28	Achieving an efficient La3Si8N11O4: Eu2+ phosphor via chemical reduction of nano-scale carbon film: Toward white light-emitting diodes. Journal of Alloys and Compounds, 2019, 799, 360-367.	5.5	25
29	Oxidation behaviour of plasma-sprayed ZrB2-SiC coatings. Ceramics International, 2019, 45, 2385-2392.	4.8	25
30	Bifunctional water-electrolysis-catalysts meeting band-diagram analysis: case study of "FeP― electrodes. Journal of Materials Chemistry A, 2020, 8, 20021-20029.	10.3	25
31	Pursuing enhanced oxidation resistance of ZrB2 ceramics by SiC and WC co-doping. Journal of the European Ceramic Society, 2018, 38, 5311-5318.	5.7	24
32	Robust Porous WCâ€Based Selfâ€Supported Ceramic Electrodes for High Current Density Hydrogen Evolution Reaction. Advanced Science, 2022, 9, e2106029.	11.2	24
33	Hard SiOC Microbeads as a High-Performance Lithium-Ion Battery Anode. ACS Applied Energy Materials, 2020, 3, 10183-10191.	5.1	22
34	Direct observation of Eu atoms in AlN lattice and the firstâ€principles simulations. Journal of the American Ceramic Society, 2019, 102, 310-319.	3.8	20
35	Synthesis, Crystal Structure, and Luminescence Properties of Y ₄ Si ₂ O ₇ N ₂ : Eu ²⁺ Oxynitride Phosphors. Journal of the American Ceramic Society, 2016, 99, 183-190.	3.8	19
36	Graphene-Decorated Boron–Carbon–Nitride-Based Metal-Free Catalysts for an Enhanced Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 3861-3868.	5.1	19

Liang-Jun Yin

#	Article	IF	CITATIONS
37	Synthesis of pure AlON: Eu2+, Mg2+ phosphors by a mechanochemical activation route. Ceramics International, 2013, 39, 2601-2604.	4.8	18
38	Highly Efficient and Robust MoS ₂ Nanoflake-Modified-TiN-Ceramic-Membrane Electrode for Electrocatalytic Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 6730-6739.	5.1	17
39	The Effects of Fluxes on AlN:Eu ²⁺ Blue Phosphors Synthesized by a Carbothermal Reduction Method. Journal of the American Ceramic Society, 2011, 94, 3842-3846.	3.8	16
40	Synthesis and photoluminescence of Eu, Mg-alon phosphors by carbothermal reduction. Journal of Luminescence, 2012, 132, 671-675.	3.1	16
41	Nitrogen-Doped Oxygenated Molybdenum Phosphide as an Efficient Electrocatalyst for Hydrogen Evolution in Alkaline Media. Frontiers in Chemistry, 2020, 8, 733.	3.6	16
42	Insight into the evolution mechanism of carbon film and Eu valence in carbon coated BaMgAl10O17: Eu2+ phosphor annealed in air. Ceramics International, 2018, 44, 8898-8903.	4.8	14
43	The crystal structure and luminescence properties of a novel green-yellow emitting Ca _{1.5} Mg _{0.5} Si _{1â^x} Li _x O _{4â^î^} :Ce ³⁺ phosphor with high quantum efficiency and thermal stability. Dalton Transactions, 2018, 47, 9834-9844.	3.3	14
44	Luminescent properties of a novel Al10O3N8:Eu2+ phosphor by a mechanochemical activation route. Optical Materials, 2015, 42, 511-515.	3.6	13
45	Investigation of electrical properties of pressureless sintered ZrB2-based ceramics. Ceramics International, 2019, 45, 7717-7722.	4.8	13
46	Improved Blueâ€Emitting AlN:Eu ²⁺ Phosphors by Alloying with GaN. Journal of the American Ceramic Society, 2015, 98, 3897-3904.	3.8	12
47	Highly Stable Modified Phosphors of Ba ₂ SiO ₄ :Eu ²⁺ by Forming a Robust Hydrophobic Inorganic Surface Layer of Silicon-Oxy-Imide-Carbide. Journal of Physical Chemistry C, 2017, 121, 11616-11622.	3.1	12
48	Mechanistic study of graphitic carbon layer and nanosphere formation on the surface of T-ZnO. Inorganic Chemistry Frontiers, 2017, 4, 978-985.	6.0	12
49	Highâ€performance infrared emissivity of microâ€arc oxidation coatings formed on titanium alloy for aerospace applications. International Journal of Applied Ceramic Technology, 2018, 15, 579-591.	2.1	12
50	Carbon-decorated LiMn2O4 nanorods with enhanced performance for supercapacitors. Journal of Alloys and Compounds, 2019, 805, 624-630.	5.5	12
51	Luminescent properties and microstructure of SiC doped AlON: Eu2+ phosphors. Journal of Alloys and Compounds, 2017, 725, 217-226.	5.5	10
52	Transition of Emission Colours as a Consequence of Heat-Treatment of Carbon Coated Ce3+-Doped YAG Phosphors. Materials, 2017, 10, 1180.	2.9	10
53	Insight the Luminescence Properties of AlON: Eu, Mg Phosphor under VUV Excitation. Materials, 2017, 10, 723.	2.9	9
54	Eu Sites in Eu-Doped AlON Phosphors: Anomalous Eu Occupancy Layers. Journal of Physical Chemistry C. 2019, 123, 3110-3114.	3.1	9

Liang-Jun Yin

#	Article	IF	CITATIONS
55	Synthesis of C-La2Si2O7:Eu2+ phosphors by addition of AlF3: Experimental and theoretical analysis. Journal of Alloys and Compounds, 2020, 844, 156127.	5.5	4
56	Improving oxidation resistance of ZrB2-based ceramics by LaF3 doping via oxidation-induced self-healing mechanism. Ceramics International, 2021, 47, 9504-9512.	4.8	4
57	Optimization of BaMgAl10O17:Eu2+ phosphors by the substitution of Si-N bonds for Al-O bonds. Journal of Rare Earths, 2010, 28, 281-284.	4.8	2
58	Optical Analysis Using Effective Medium Theory and Finite Element Method to Study the Enhanced Light Absorption in Porous BaMgAl10O17:Eu2+ Phosphor. Physics of the Solid State, 2019, 61, 1450-1455.	0.6	1
59	Porous quasi-graphitic carbon sheets for unprecedented sodium storage. Inorganic Chemistry Frontiers, 2020, 7, 2443-2450.	6.0	1
60	Influence of dispersion method of LaF3 in ZrB2-based ceramics on high-temperature oxidation resistance. Ceramics International, 2021, 47, 17560-17569.	4.8	1