Joseph G Meert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7322807/publications.pdf Version: 2024-02-01

		34105	26613
123	11,667	52	107
papers	citations	h-index	g-index
132	132	132	5030
all docs	docs citations	times ranked	citing authors

LOSEDH C. MEEDT

#	Article	IF	CITATIONS
1	Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 2012, 114, 325-368.	9.1	1,088
2	A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics, 2003, 362, 1-40.	2.2	898
3	Continental break-up and collision in the Neoproterozoic and Palaeozoic — A tale of Baltica and Laurentia. Earth-Science Reviews, 1996, 40, 229-258.	9.1	710
4	The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran–Cambrian radiation. Gondwana Research, 2008, 14, 5-21.	6.0	446
5	The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics, 2003, 375, 261-288.	2.2	430
6	Paleomagnetic constraints on timing of the Neoproterozoic breakup of Rodinia and the Cambrian formation of Gondwana. Geology, 1993, 21, 889.	4.4	351
7	The Proterozoic supercontinent Rodinia: paleomagnetically derived reconstructions for 1100 to 800 Ma. Earth and Planetary Science Letters, 1998, 154, 13-24.	4.4	349
8	What's in a name? The Columbia (Paleopangaea/Nuna) supercontinent. Gondwana Research, 2012, 21, 987-993.	6.0	343
9	Palaeomagnetic configuration of continents during the Proterozoic. Tectonophysics, 2003, 375, 289-324.	2.2	332
10	Precambrian crustal evolution of Peninsular India: A 3.0 billion year odyssey. Journal of Asian Earth Sciences, 2010, 39, 483-515.	2.3	301
11	A â€ [~] snowball Earth' climate triggered by continental break-up through changes in runoff. Nature, 2004, 428, 303-306.	27.8	292
12	The assembly of Gondwana 800-550 Ma. Journal of Geodynamics, 1997, 23, 223-235.	1.6	287
13	Paleomagnetism and Detrital Zircon Geochronology of the Upper Vindhyan Sequence, Son Valley and Rajasthan, India: A ca. 1000Ma Closure age for the Purana Basins?. Precambrian Research, 2008, 164, 137-159.	2.7	237
14	The Columbia supercontinent revisited. Gondwana Research, 2017, 50, 67-83.	6.0	212
15	Paleomagnetic Evidence for a Paleo-Mesoproterozoic Supercontinent Columbia. Gondwana Research, 2002, 5, 207-215.	6.0	206
16	Paleomagnetism and geochronology of the Malani Igneous Suite, Northwest India: Implications for the configuration of Rodinia and the assembly of Gondwana. Precambrian Research, 2009, 170, 13-26.	2.7	200
17	Paleomagnetic investigation of the Neoproterozoic Gagwe lavas and Mbozi complex, Tanzania and the assembly of Gondwana. Precambrian Research, 1995, 74, 225-244.	2.7	192
18	The 1375Ma "Kibaran event―in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime. Precambrian Research, 2010, 180, 63-84.	2.7	191

#	Article	IF	CITATIONS
19	A Damara orogen perspective on the assembly of southwestern Gondwana. Geological Society Special Publication, 2008, 294, 257-278.	1.3	185
20	Reconstructions of the continents around the North Atlantic at about the 60th parallel. Earth and Planetary Science Letters, 2001, 187, 55-69.	4.4	180
21	Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India: Implications for the tectonic evolution and paleogeographic reconstructions. Precambrian Research, 2012, 198-199, 51-76.	2.7	160
22	The Paleozoic evolution of Central Tianshan: Geochemical and geochronological evidence. Gondwana Research, 2014, 25, 797-819.	6.0	130
23	Strange attractors, spiritual interlopers and lonely wanderers: The search for pre-Pangean supercontinents. Geoscience Frontiers, 2014, 5, 155-166.	8.4	126
24	A paleomagnetic and geochronologic study of the Majhgawan kimberlite, India: Implications for the age of the Upper Vindhyan Supergroup. Precambrian Research, 2006, 149, 65-75.	2.7	123
25	A detrital zircon U–Pb and Hf isotopic transect across the Son Valley sector of the Vindhyan Basin, India: Implications for basin evolution and paleogeography. Gondwana Research, 2014, 26, 348-364.	6.0	119
26	India's changing place in global Proterozoic reconstructions: A review of geochronologic constraints and paleomagnetic poles from the Dharwar, Bundelkhand and Marwar cratons. Journal of Geodynamics, 2010, 50, 224-242.	1.6	107
27	A plate-tectonic speed limit?. Nature, 1993, 363, 216-217.	27.8	104
28	The origin of microcontinents in the Central Asian Orogenic Belt: Constraints from paleomagnetism and geochronology. Precambrian Research, 2011, 185, 37-54.	2.7	104
29	The origin of the Baydaric microcontinent, Mongolia: Constraints from paleomagnetism and geochronology. Tectonophysics, 2010, 485, 306-320.	2.2	101
30	Growing Gondwana and Rethinking Rodinia: A Paleomagnetic Perspective. Gondwana Research, 2001, 4, 279-288.	6.0	99
31	Paleoproterozoic mafic dyke swarms from the Dharwar craton; paleomagnetic poles for India from 2.37 to 1.88Ga and rethinking the Columbia supercontinent. Precambrian Research, 2014, 244, 100-122.	2.7	98
32	The magnificent seven: A proposal for modest revision of the quality index. Tectonophysics, 2020, 790, 228549.	2.2	97
33	Paleomagnetic and ⁴⁰ Ar/ ³⁹ Ar Study of the Sinyai Dolerite, Kenya: Implications for Gondwana Assembly. Journal of Geology, 1996, 104, 131-142.	1.4	94
34	The Neoproterozoic (1000–540 Ma) glacial intervals: No more snowball earth?. Earth and Planetary Science Letters, 1994, 123, 1-13.	4.4	93
35	Further geochronological and paleomagnetic constraints on Malani (and pre-Malani) magmatism in NW India. Tectonophysics, 2013, 608, 1254-1267.	2.2	91
36	Paleomagnetism of the Catoctin volcanic province: A new Vendian-Cambrian apparent polar wander path for North America. Journal of Geophysical Research, 1994, 99, 4625-4641.	3.3	88

#	Article	IF	CITATIONS
37	Tectonic Significance of the Fen Province, S. Norway: Constraints From Geochronology and Paleomagnetism. Journal of Geology, 1998, 106, 553-564.	1.4	87
38	A palaeomagnetic and palaeobiogeographical perspective on latest Neoproterozoic and early Cambrian tectonic events. Journal of the Geological Society, 2004, 161, 477-487.	2.1	86
39	Chapter 3 The Archaean and Proterozoic history of Peninsular India: tectonic framework for Precambrian sedimentary basins in India. Geological Society Memoir, 2015, 43, 29-54.	1.7	81
40	Preliminary report on the paleomagnetism of 1.88Ga dykes from the Bastar and Dharwar cratons, Peninsular India. Gondwana Research, 2011, 20, 335-343.	6.0	80
41	Early Permian slab breakoff in the Chinese Tianshan belt inferred from the post-collisional granitoids. Gondwana Research, 2015, 27, 228-243.	6.0	79
42	A paleomagnetic analysis of Cambrian true polar wander. Earth and Planetary Science Letters, 1999, 168, 131-144.	4.4	78
43	Paleogeography of Baltica in the Ediacaran: Paleomagnetic and geochronological data from the clastic Zigan Formation, South Urals. Precambrian Research, 2013, 236, 16-30.	2.7	66
44	The Paleoproterozoic magmatic–metamorphic events and cover sediments of the Tiekelik Belt and their tectonic implications for the southern margin of the Tarim Craton, northwestern China. Precambrian Research, 2014, 254, 210-225.	2.7	64
45	Kotlin regional stage in the South Urals. Doklady Earth Sciences, 2011, 440, 1222-1226.	0.7	62
46	Paleo-position of the North China craton within the supercontinent Columbia: Constraints from new paleomagnetic results. Precambrian Research, 2014, 255, 276-293.	2.7	61
47	The Cambrian Explosion: Plume-driven birth of the second ecosystem on Earth. Gondwana Research, 2014, 25, 945-965.	6.0	59
48	Ediacaran–Early Ordovician paleomagnetism of Baltica: A review. Gondwana Research, 2014, 25, 159-169.	6.0	58
49	Age and paleomagnetic signature of the AlnÃ, carbonatite complex (NE Sweden): Additional controversy for the Neoproterozoic paleoposition of Baltica. Precambrian Research, 2007, 154, 159-174.	2.7	56
50	Detrital Zircons Reveal Evidence of Hadean Crust in the Singhbhum Craton, India. Journal of Geology, 2018, 126, 541-552.	1.4	55
51	Revisiting the paleomagnetism of the 1.476 Ga St. Francois Mountains igneous province, Missouri. Tectonics, 2002, 21, 1-1-1-19.	2.8	54
52	Glaciation and ~770Ma Ediacara (?) Fossils from the Lesser Karatau Microcontinent, Kazakhstan. Gondwana Research, 2011, 19, 867-880.	6.0	52
53	Paleomagnetism, geochronology and tectonic implications of the Cambrian-age Carion granite, Central Madagascar. Tectonophysics, 2001, 340, 1-21.	2.2	51
54	Rapid changes of magnetic Field polarity in the late Ediacaran: Linking the Cambrian evolutionary radiation and increased UV-B radiation. Gondwana Research, 2016, 34, 149-157.	6.0	51

#	Article	IF	CITATIONS
55	Paleomagnetic and ⁴⁰ Ar/ ³⁹ Ar Studies of Late Kibaran Intrusives in Burundi, East Africa: Implications for Late Proterozoic Supercontinents. Journal of Geology, 1994, 102, 621-637.	1.4	49
56	Late Proterozoic paleomagnetism and tectonic models: a critical appraisal. Precambrian Research, 1991, 53, 149-163.	2.7	48
57	Polar Wander and the Cambrian. Science, 1998, 279, 9a-9.	12.6	48
58	A true polar wander trigger for the Great Jurassic East Asian Aridification. Geology, 2019, 47, 1112-1116.	4.4	48
59	Late Ediacaran magnetostratigraphy of Baltica: Evidence for Magnetic Field Hyperactivity?. Earth and Planetary Science Letters, 2016, 435, 124-135.	4.4	42
60	Paleomagnetic analysis of the Marwar Supergroup, Rajasthan, India and proposed interbasinal correlations. Journal of Asian Earth Sciences, 2014, 91, 339-351.	2.3	40
61	The stratoid granites of central Madagascar: paleomagnetism and further age constraints on neoproterozoic deformation. Precambrian Research, 2003, 120, 101-129.	2.7	38
62	Ages of detrital zircons (U/Pb, LA-ICP-MS) from the Latest Neoproterozoic–Middle Cambrian(?) Asha Group and Early Devonian Takaty Formation, the Southwestern Urals: A test of an Australia-Baltica connection within Rodinia. Precambrian Research, 2014, 244, 288-305.	2.7	37
63	Geochemical characterization of a reconstructed 1110†Ma Large Igneous Province. Precambrian Research, 2019, 332, 105382.	2.7	37
64	A Closure of the Mongolâ€Okhotsk Ocean by the Middle Jurassic: Reconciliation of Paleomagnetic and Geological Evidence. Geophysical Research Letters, 2020, 47, e2020GL088235.	4.0	37
65	Coupled modeling of global carbon cycle and climate in the Neoproterozoic: links between Rodinia breakup and major glaciations. Comptes Rendus - Geoscience, 2007, 339, 212-222.	1.2	35
66	Palaeoproterozoic magmatic–metamorphic history of the Quanji Massif, Northwest China: implications for a single North China-Quanji-Tarim craton within the Columbia supercontinent?. International Geology Review, 2015, 57, 1772-1790.	2.1	34
67	Paleomagnetism of the Late Archean Nyanzian System, western Kenya. Precambrian Research, 1994, 69, 113-131.	2.7	33
68	The Oslo Rift: new palaeomagnetic and40Ar/39Ar age constraints. Geophysical Journal International, 1998, 135, 1045-1059.	2.4	32
69	Early Proterozoic palaeomagnetic data from the Pechenga Zone (north-west Russia) and their bearing on Early Proterozoic palaeogeography. Geophysical Journal International, 1995, 122, 520-536.	2.4	31
70	Paleomagnetism and geochronology of mafic dykes from the Southern Granulite Terrane, India: Expanding the Dharwar craton southward. Tectonophysics, 2019, 760, 4-22.	2.2	31
71	Non-dipole fields and inclination bias: insights from a random walk analysis. Earth and Planetary Science Letters, 2003, 214, 395-408.	4.4	30
72	Cooling of a Late-Syn Orogenic Pluton: Evidence from Laser K-feldspar Modelling of the Carion Granite, Madagascar. Gondwana Research, 2001, 4, 541-550.	6.0	29

#	Article	IF	CITATIONS
73	Permian Paleogeography of the Eastern CAOB: Paleomagnetic Constraints From Volcanic Rocks in Central Eastern Inner Mongolia, NE China. Journal of Geophysical Research: Solid Earth, 2018, 123, 2559-2582.	3.4	29
74	Comment on â€~New palaeomagnetic result from Vendian red sediments in Cisbaikalia and the problem of the relationship ofÂSiberia and Laurentia in the Vendian' by S.ÂA. Pisarevsky, R.ÂA.ÂKomissarova and A. N. Khramov. Geophysical Journal International, 2001, 146, 867-870.	2.4	26
75	Paleomagnetism of upper Ediacaran clastics from the South Urals: Implications to paleogeography of Baltica and the opening of the Iapetus Ocean. Gondwana Research, 2015, 28, 191-208.	6.0	21
76	An expanding list of reliable paleomagnetic poles for Precambrian tectonic reconstructions. , 2021, , 605-639.		21
77	New constraints for the age of Vendian glacial deposits (Central Urals). Doklady Earth Sciences, 2013, 449, 303-308.	0.7	20
78	Two phases of Paleoproterozoic orogenesis in the Tarim Craton: Implications for Columbia assembly. Gondwana Research, 2020, 83, 201-216.	6.0	19
79	Late Paleozoic paleomagnetism of South Mongolia: Exploring relationships between Siberia, Mongolia and North China. Gondwana Research, 2016, 40, 124-141.	6.0	18
80	An Initial Collision of India and Asia in the Equatorial Humid Belt. Geophysical Research Letters, 2021, 48, e2021GL093408.	4.0	18
81	The Columbia supercontinent: Retrospective, status, and a statistical assessment of paleomagnetic poles used in reconstructions. Gondwana Research, 2022, 110, 143-164.	6.0	17
82	Testing the Neoproterozoic glacial models. Gondwana Research, 2007, 11, 573-574.	6.0	16
83	How well do Precambrian paleomagnetic data agree with the Phanerozoic apparent polar wander path? A Baltica case study. Precambrian Research, 2016, 285, 80-90.	2.7	16
84	ldentifying late Neoproterozoic–early Paleozoic sediments in the South Qilian Belt, China: A peri-Gondwana connection in the northern Tibetan Plateau. Gondwana Research, 2019, 76, 173-184.	6.0	16
85	In GAD we trust. Nature Geoscience, 2009, 2, 673-674.	12.9	15
86	Age of the Marwar Supergroup, NW India: A note on the U–Pb geochronology of Jodhpur Group felsic volcanics. Geoscience Frontiers, 2022, 13, 101287.	8.4	15
87	Paleomagnetic evidence for a stationary Marion hotspot: Additional paleomagnetic data from Madagascar. Gondwana Research, 2006, 10, 340-348.	6.0	14
88	Quantifying the Extent of the Paleoâ€Asian Ocean During the Late Carboniferous to Early Permian. Geophysical Research Letters, 2021, 48, e2021GL094498.	4.0	14
89	Precambrian microcontinents of the Ural-Mongolian Belt: New paleomagnetic and geochronological data. Geotectonics, 2011, 45, 51-70.	0.9	13
90	The East European Platform in the late Ediacaran: new paleomagnetic and geochronological data. Russian Geology and Geophysics, 2013, 54, 1392-1401.	0.7	13

#	Article	IF	CITATIONS
91	India and Antarctica in the Precambrian: a brief analysis. Geological Society Special Publication, 2017, 457, 339-351.	1.3	13
92	Assessing the intersection/remagnetization puzzle with synthetic apparent polar wander paths. Geophysical Journal International, 2018, 214, 1164-1172.	2.4	12
93	The Nama Group revisited. Geophysical Journal International, 1997, 129, 637-650.	2.4	11
94	Late Ediacaran magnetic field hyperactivity: Quantifying the reversal frequency in the Zigan Formation, Southern Urals, Russia. Gondwana Research, 2021, 94, 133-142.	6.0	11
95	Paleomagnetic Constraints on Neoproterozoic †Snowball Earth' Continental Reconstructions. Geophysical Monograph Series, 0, , 5-11.	0.1	10
96	Reply to JDA Piper on "The making and unmaking of a supercontinent: Rodinia revisited― Tectonophysics, 2004, 383, 99-103.	2.2	9
97	Neoproterozoic tectonic transition from subduction-related convergence to continental extension of the Tarim Block, NW China. Precambrian Research, 2021, 362, 106278.	2.7	9
98	An "Inverse Conglomerate―Paleomagnetic Test and Timing of In Situ Terra Rossa Formation at Bloomington, Indiana. Journal of Geology, 2009, 117, 126-138.	1.4	8
99	Does the planetary dynamo go cycling on? Re-examining the evidence for cycles in magnetic reversal rate. International Journal of Astrobiology, 2018, 17, 44-50.	1.6	8
100	Paleomagnetic results from the Singhbhum Craton, India: Remagnetization, demagnetization, and complication. Precambrian Research, 2021, 359, 106165.	2.7	8
101	The Precambrian drift history and paleogeography of India. , 2021, , 305-332.		8
102	Heat flow in the Ozark Plateau, Arkansas and Missouri: relationship to groundwater flow. Journal of Volcanology and Geothermal Research, 1991, 47, 337-347.	2.1	7
103	Heat flow at the Platanares, Honduras, geothermal site. Journal of Volcanology and Geothermal Research, 1991, 45, 91-99.	2.1	7
104	The Cambrian Carion Granite of Madagascar: A Case of Late Pan-African Shoshonitic Magmatism. Gondwana Research, 2001, 4, 746-747.	6.0	7
105	The fingerprint of Precambrian basement in the Chinese Central Tianshan: evidence from inherited/xenocrystic zircons of magmatic rocks. Geological Magazine, 2015, 152, 176-183.	1.5	7
106	Paleomagnetism and dating of a thick lava pile in the Permian Bakaly formation of eastern Kazakhstan: Regularities and singularities of the paleomagnetic record in thick lava series. Physics of the Earth and Planetary Interiors, 2016, 253, 5-20.	1.9	7
107	Microâ€Blocks in NE Asia Amalgamated Into the Unified Amuria Block by â^1⁄4300ÂMa: First Paleomagnetic Evidence From the Songliao Block, NE China. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022881.	3.4	7
108	Evolution of the Arabian-Nubian Shield in Gabal Samra area, Sinai; implications from zircon U–Pb geochronology. Journal of African Earth Sciences, 2022, 192, 104538.	2.0	7

#	ARTICLE	IF	CITATIONS
109	Proterozoic East Gondwana: Supercontinent Assembly and Breakup, Special Publication 206. Eos, 2003, 84, 372.	0.1	6
110	The neoproterozoic (1100-540 Ma) glacial intervals: No more snowball Earth?: Reply. Earth and Planetary Science Letters, 1995, 131, 123-125.	4.4	5
111	Paleomagnetism of Bhander Sediments from Bhopal Inlier, Vindhyan Supergroup. Journal of the Geological Society of India, 2013, 82, 588-589.	1.1	5
112	Late Paleozoic geomagnetic-field estimates from studies of Permian lavas in northeastern Kazakhstan. Russian Geology and Geophysics, 2014, 55, 108-117.	0.7	5
113	A Neoarchean paleomagnetic pole from the Kisii Series of western Kenya: Implications for crustal mobility. Precambrian Research, 2016, 279, 91-102.	2.7	5
114	Soft-sediment deformation structures (SSDS) in the Ediacaran and lower Cambrian succession of the Aksu area, NW Tarim Basin, and their implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567, 110237.	2.3	5
115	Geochemical and palaeomagnetic characteristics of the Vestfold Hills mafic dykes in the Prydz Bay region: implications of a Paleoproterozoic connection between East Antarctica and Proto-India. Geological Society Special Publication, 2022, 518, 149-171.	1.3	5
116	Biogeography and the nature and timing of the Cambrian radiation. The Paleontological Society Papers, 2004, 10, 79-92.	0.6	4
117	Four-stage building of the Cambrian Carion pluton (Madagascar). Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2009, 100, 133-145.	0.3	4
118	Ediacaran–Cambrian paleogeography of Baltica: A paleomagnetic view from a diamond pit on the White Sea east coast. Lithosphere, 2016, 8, 564-573.	1.4	4
119	Protracted magmatism and magnetization around the McClure Mountain alkaline igneous complex. Lithosphere, 2019, 11, 590-602.	1.4	4
120	The (Paleo)Geography of Evolution: Making Sense of Changing Biology and Changing Continents. Evolution: Education and Outreach, 2012, 5, 547-554.	0.8	3
121	Episodic Neoproterozoic extension-related magmatism in the Altyn Tagh, NW China: implications for extension and breakup processes of Rodinia supercontinent. International Geology Review, 2022, 64, 1474-1489.	2.1	3
122	Gondwanaland, Formation. Encyclopedia of Earth Sciences Series, 2011, , 434-436.	0.1	3
123	Earth as an Evolving Planetary System. Eos, 2005, 86, 182.	0.1	Ο