Cécile V Denis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/73228/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a dual hybrid AAV vector for endothelial-targeted expression of von Willebrand factor. Gene Therapy, 2023, 30, 245-254.	4.5	11
2	The VWF/LRP4/αVβ3-axis represents a novel pathway regulating proliferation of human vascular smooth muscle cells. Cardiovascular Research, 2022, 118, 622-637.	3.8	22
3	TaSER: Combining forces to stop the clot. Journal of Thrombosis and Haemostasis, 2022, 20, 293-295.	3.8	0
4	A thrombopoietin receptor agonist to rescue an unusual platelet transfusion-induced reaction in a p.V1316M-associated von Willebrand disease type 2B patient. Therapeutic Advances in Hematology, 2022, 13, 204062072210768.	2.5	0
5	New insights into regulation of $\hat{I}\pm IIb\hat{I}^2$ 3 integrin signaling by filamin A. Research and Practice in Thrombosis and Haemostasis, 2022, 6, e12672.	2.3	2
6	Antithrombotic potential of a singleâ€domain antibody enhancing the activated protein Câ€cofactor activity of protein S. Journal of Thrombosis and Haemostasis, 2022, , .	3.8	0
7	Identification of von Willebrand factor D4 domain mutations in patients of Afro aribbean descent: In vitro characterization. Research and Practice in Thrombosis and Haemostasis, 2022, 6, e12737.	2.3	1
8	Illustrated Stateâ€ofâ€theâ€Art Capsules of the ISTH 2022 Congress. Research and Practice in Thrombosis and Haemostasis, 2022, 6, e12747.	2.3	4
9	The von Willebrand Factor A1 domain mediates thromboinflammation, aggravating ischemic stroke outcome in mice. Haematologica, 2021, 106, 819-828.	3.5	18
10	In vivo modulation of a dominantâ€negative variant in mouse models of von Willebrand disease type 2A. Journal of Thrombosis and Haemostasis, 2021, 19, 139-146.	3.8	5
11	A compact integrated microfluidic oxygenator with high gas exchange efficiency and compatibility for long-lasting endothelialization. Lab on A Chip, 2021, 21, 4791-4804.	6.0	14
12	von Willebrand disease: what does the future hold?. Blood, 2021, 137, 2299-2306.	1.4	13
13	How to keep the FVIII/VWF complex in the circulation. Haematologica, 2021, , .	3.5	1
14	Measuring betaâ€galactose exposure on platelets: Standardization and healthy reference values. Research and Practice in Thrombosis and Haemostasis, 2020, 4, 813-822.	2.3	6
15	Singleâ€domain antibodies targeting antithrombin reduce bleeding in hemophilic mice with or without inhibitors. EMBO Molecular Medicine, 2020, 12, e11298.	6.9	20
16	Camelidâ€derived singleâ€chain antibodies in hemostasis: Mechanistic, diagnostic, and therapeutic applications. Research and Practice in Thrombosis and Haemostasis, 2020, 4, 1087-1110.	2.3	8
17	A hemophilia A mouse model for the in vivo assessment of emicizumab function. Blood, 2020, 136, 740-748.	1.4	32
18	Development and characterization of singleâ€domain antibodies neutralizing protease nexinâ€1 as tools to increase thrombin generation. Journal of Thrombosis and Haemostasis, 2020, 18, 2155-2168.	3.8	6

#	Article	IF	CITATIONS
19	NAADP/SERCA3-Dependent Ca ²⁺ Stores Pathway Specifically Controls Early Autocrine ADP Secretion Potentiating Platelet Activation. Circulation Research, 2020, 127, e166-e183.	4.5	10
20	Correction of bleeding in experimental severe hemophilia A by systemic delivery of factor VIII-encoding mRNA. Haematologica, 2020, 105, 1129-1137.	3.5	15
21	Shear rate gradients promote a bi-phasic thrombus formation on weak adhesive proteins, such as fibrinogen in a VWF-dependent manner. Haematologica, 2020, 105, 2471-2483.	3.5	22
22	Removal of Mannose-Ending Glycan at Asn2118 Abrogates FVIII Presentation by Human Monocyte-Derived Dendritic Cells. Frontiers in Immunology, 2020, 11, 393.	4.8	3
23	Functional and clinical aspects of the anti-hemophilic bispecific antibody emicizumab. Hematologie, 2020, 26, 328-342.	0.0	Ο
24	Gain-of-Function Variant p.Pro2555Arg of von Willebrand Factor Increases Aggregate Size through Altering Stem Dynamics. Thrombosis and Haemostasis, 2020, , .	3.4	3
25	A Combination of Two Variants p. (Val510 =) and p. (Pro2145Thrfs * 5), Responsible for von Willebrand Disease Type 3 in a Caribbean Patient. TH Open, 2020, 04, e318-e321.	1.4	1
26	Endothelial-driven increase in plasma thrombin generation characterising a new hypercoagulable phenotype in acute heart failure. International Journal of Cardiology, 2019, 274, 195-201.	1.7	22
27	A singleâ€domain antibody that blocks factorVIIa activity in the absence but not presence of tissue factor. Journal of Thrombosis and Haemostasis, 2019, 17, 2035-2046.	3.8	1
28	Weibel-Palade Bodies Orchestrate Pericytes During Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1843-1858.	2.4	19
29	A Thrombin-Activatable Factor X Variant Corrects Hemostasis in a Mouse Model for Hemophilia A. Thrombosis and Haemostasis, 2019, 119, 1981-1993.	3.4	5
30	Relevance of platelet desialylation and thrombocytopenia in type 2B von Willebrand disease: preclinical and clinical evidence. Haematologica, 2019, 104, 2493-2500.	3.5	13
31	Targeting protease nexin-1, a natural anticoagulant serpin, to control bleeding and improve hemostasis in hemophilia. Blood, 2019, 134, 1632-1644.	1.4	14
32	Vascular endothelial cell expression of JAK2 ^{V617F} is sufficient to promote a pro-thrombotic state due to increased P-selectin expression. Haematologica, 2019, 104, 70-81.	3.5	80
33	Disrupted filamin A/αIIbβ3 interaction induces macrothrombocytopenia by increasing RhoA activity. Blood, 2019, 133, 1778-1788.	1.4	27
34	Platelet Functions are Decreased in Obesity and Restored after Weight Loss: Evidence for a Role of the SERCA3-Dependent ADP Secretion Pathway. Thrombosis and Haemostasis, 2019, 119, 384-396.	3.4	13
35	The von Willebrand factor Tyr2561 allele is a gain-of-function variant and a risk factor for early myocardial infarction. Blood, 2019, 133, 356-365.	1.4	24
36	Structure and dynamics of the platelet integrin-binding C4 domain of von Willebrand factor. Blood, 2019, 133, 366-376.	1.4	22

#	Article	IF	CITATIONS
37	The contribution of platelet glycoprotein receptors to inflammatory bleeding prevention is stimulus and organ dependent. Haematologica, 2018, 103, e256-e258.	3.5	50
38	VWF clearance: it's glycomplicated. Blood, 2018, 131, 842-843.	1.4	5
39	Macrophage scavenger receptor SR-AI contributes to the clearance of von Willebrand factor. Haematologica, 2018, 103, 728-737.	3.5	32
40	Advances in Clinical and Basic Science of Coagulation: Illustrated abstracts of the 9th Chapel Hill Symposium on Hemostasis. Research and Practice in Thrombosis and Haemostasis, 2018, 2, 407-428.	2.3	5
41	A mutation of the human EPHB2 gene leads to a major platelet functional defect. Blood, 2018, 132, 2067-2077.	1.4	17
42	Impact of PI3Kα (Phosphoinositide 3-Kinase Alpha) Inhibition on Hemostasis and Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2041-2053.	2.4	24
43	Protein kinase C signaling dysfunction in von Willebrand disease (p.V1316M) type 2B platelets. Blood Advances, 2018, 2, 1417-1428.	5.2	9
44	A factor VIII–nanobody fusion protein forming an ultrastable complex with VWF: effect on clearance and antibody formation. Blood, 2018, 132, 1193-1197.	1.4	19
45	Arterial Pulsatility and Circulating vonÂWillebrand Factor in Patients onÂMechanical CirculatoryÂSupport. Journal of the American College of Cardiology, 2018, 71, 2106-2118.	2.8	86
46	A mutation in the gene coding for the sialic acid transporter SLC35A1 is required for platelet life span but not proplatelet formation. Haematologica, 2018, 103, e613-e617.	3.5	36
47	The Von Willebrand Factor Tyr2561 Allele Is a Gain-of-Function Variant and a Potential Risk Factor for Early Myocardial Infarction. Blood, 2018, 132, 2459-2459.	1.4	1
48	Network-based analysis of omics data: the LEAN method. Bioinformatics, 2017, 33, 701-709.	4.1	29
49	Complex formation with pentraxin-2 regulates factor X plasma levels and macrophage interactions. Blood, 2017, 129, 2443-2454.	1.4	11
50	Transient von Willebrand factorâ€mediated platelet influx stimulates liver regeneration after partial hepatectomy in mice. Liver International, 2017, 37, 1731-1737.	3.9	39
51	Potent Thrombolytic Effect of <i>N</i> -Acetylcysteine on Arterial Thrombi. Circulation, 2017, 136, 646-660.	1.6	112
52	Use of a thrombopoietin receptor agonist in von Willebrand disease type 2B (p.V1316M) with severe thrombocytopenia and intracranial hemorrhage. Platelets, 2017, 28, 518-520.	2.3	5
53	Emicizumab, a bispecific antibody recognizing coagulation factors IX and X: how does it actually compare to factor VIII?. Blood, 2017, 130, 2463-2468.	1.4	197
54	von Willebrand factor and inflammation. Journal of Thrombosis and Haemostasis, 2017, 15, 1285-1294.	3.8	178

#	Article	IF	CITATIONS
55	Emerging Therapeutic Strategies in the Treatment of Hemophilia A. Seminars in Thrombosis and Hemostasis, 2017, 43, 581-590.	2.7	22
56	A Novel Single-Domain Antibody Against von Willebrand Factor A1 Domain Resolves Leukocyte Recruitment and Vascular Leakage During Inflammation—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1736-1740.	2.4	33
57	A Laboratory Phenotype/Genotype Correlation of 1167 French Patients From 670 Families With von Willebrand Disease. Medicine (United States), 2016, 95, e3038.	1.0	48
58	Soluble Siglec-5 associates to PSGL-1 and displays anti-inflammatory activity. Scientific Reports, 2016, 6, 37953.	3.3	26
59	Antibody-Based Protection of von Willebrand Factor Degradation. JACC: Heart Failure, 2016, 4, 518.	4.1	0
60	Assessment of endothelial damage and cardiac injury in a mouse model mimicking thrombotic thrombocytopenic purpura. Journal of Thrombosis and Haemostasis, 2016, 14, 1917-1930.	3.8	9
61	Identification and characterization of the elusive mutation causing the historical von Willebrand Disease type IIC Miami. Journal of Thrombosis and Haemostasis, 2016, 14, 1725-1735.	3.8	9
62	LDL receptor-related protein 1 contributes to the clearance of the activated factor VII-antithrombin complex. Journal of Thrombosis and Haemostasis, 2016, 14, 2458-2470.	3.8	6
63	Macrophage receptor SR-AI is crucial to maintain normal plasma levels of coagulation factor X. Blood, 2016, 127, 778-786.	1.4	8
64	A genetically-engineered von Willebrand disease type 2B mouse model displays defects in hemostasis and inflammation. Scientific Reports, 2016, 6, 26306.	3.3	19
65	LIM kinase/cofilin dysregulation promotes macrothrombocytopenia in severe von Willebrand disease-type 2B. JCI Insight, 2016, 1, e88643.	5.0	23
66	Von Willebrand Factor Gene Variants Associate with Herpes simplex Encephalitis. PLoS ONE, 2016, 11, e0155832.	2.5	6
67	Biological outcome and mapping of total factor cascades in response to HIF induction during regenerative angiogenesis. Oncotarget, 2016, 7, 12102-12120.	1.8	6
68	Impaired platelet activation and cAMP homeostasis in MRP4-deficient mice. Blood, 2015, 126, 1823-1830.	1.4	51
69	Apoptotic Platelet Events Are Not Observed in Severe von Willebrand Disease-Type 2B Mutation p.V1316M. PLoS ONE, 2015, 10, e0143896.	2.5	4
70	Haemorrhagic and thrombotic diatheses in mouse models with thrombocytosis. Thrombosis and Haemostasis, 2015, 113, 414-425.	3.4	10
71	Of von Willebrand factor and platelets. Cellular and Molecular Life Sciences, 2015, 72, 307-326.	5.4	157
72	von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood, 2015, 125, 2019-2028.	1.4	296

#	Article	IF	CITATIONS
73	Shear stressâ€independent binding of von Willebrand factorâ€type 2B mutants p.R1306Q & p.V1316M to LRP1 explains their increased clearance. Journal of Thrombosis and Haemostasis, 2015, 13, 815-820.	3.8	28
74	Antibody-based prevention of von Willebrand factor degradation mediated by circulatory assist devices. Thrombosis and Haemostasis, 2014, 112, 1014-1023.	3.4	37
75	Blocking Von Willebrand Factor for Treatment of Cutaneous Inflammation. Journal of Investigative Dermatology, 2014, 134, 77-86.	0.7	59
76	Neutrophils mediate edema formation but not mechanical allodynia during zymosan-induced inflammation. Journal of Leukocyte Biology, 2014, 96, 133-142.	3.3	31
77	Hemostatic disorders in a JAK2V617F-driven mouse model of myeloproliferative neoplasm. Blood, 2014, 124, 1136-1145.	1.4	51
78	Expression of a structurally constrained von Willebrand factor variant triggers acute thrombotic thrombocytopenic purpura in mice. Blood, 2014, 123, 3344-3353.	1.4	6
79	GpIbα-VWF blockade restores vessel patency by dissolving platelet aggregates formed under very high shear rate in mice. Blood, 2014, 123, 3354-3363.	1.4	64
80	Integrin α ₆ β ₁ Is the Main Receptor for Vascular Laminins and Plays a Role in Platelet Adhesion, Activation, and Arterial Thrombosis. Circulation, 2013, 128, 541-552.	1.6	85
81	VON WILLEBRAND FACTOR ABNORMALITIES STUDIED IN THE MOUSE MODEL: WHAT WE LEARNED ABOUT VWF FUNCTIONS. Mediterranean Journal of Hematology and Infectious Diseases, 2013, 5, e2013047.	1.3	3
82	ON THE VERSATILITY OF VON WILLEBRAND FACTOR. Mediterranean Journal of Hematology and Infectious Diseases, 2013, 5, e2013046.	1.3	36
83	Clearance of von Willebrand factor. Journal of Thrombosis and Haemostasis, 2013, 11, 202-211.	3.8	63
84	Mutations in the A3 domain of Von Willebrand factor inducing combined qualitative and quantitative defects in the protein. Blood, 2013, 121, 2135-2143.	1.4	25
85	Accelerated uptake of VWF/platelet complexes in macrophages contributes to VWD type 2B–associated thrombocytopenia. Blood, 2013, 122, 2893-2902.	1.4	68
86	Platelet von Willebrand factor: sweet resistance. Blood, 2013, 122, 4006-4007.	1.4	5
87	von Willebrand factor mutation promotes thrombocytopathy by inhibiting integrin αIIbβ3. Journal of Clinical Investigation, 2013, 123, 5071-5081.	8.2	42
88	Terminal Platelet Production is Regulated by Von Willebrand Factor. PLoS ONE, 2013, 8, e63810.	2.5	20
89	Von Willebrand Factor and Thrombosis: Risk Factor, Actor and Pharmacological Target. Current Vascular Pharmacology, 2013, 11, 448-456.	1.7	15
90	Identification of Galectin-1 and Galectin-3 as Novel Partners for Von Willebrand Factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 894-901.	2.4	59

#	Article	IF	CITATIONS
91	Factor VIII and von Willebrand factor are ligands for the carbohydrate-receptor Siglec-5. Haematologica, 2012, 97, 1855-1863.	3.5	70
92	Macrophage LRP1 contributes to the clearance of von Willebrand factor. Blood, 2012, 119, 2126-2134.	1.4	99
93	A murine model to characterize the antithrombotic effect of molecules targeting human von Willebrand factor. Blood, 2012, 120, 2723-2732.	1.4	16
94	von Willebrand factor: the old, the new and the unknown. Journal of Thrombosis and Haemostasis, 2012, 10, 2428-2437.	3.8	185
95	von Willebrand factor: at the crossroads of bleeding and thrombosis. International Journal of Hematology, 2012, 95, 353-361.	1.6	36
96	von Willebrand disease biology. Haemophilia, 2012, 18, 141-147.	2.1	5
97	In Vivo Analysis of the Role of O-Glycosylations of Von Willebrand Factor. PLoS ONE, 2012, 7, e37508.	2.5	33
98	Coagulation Factor X Interaction with Macrophages through Its N-Glycans Protects It from a Rapid Clearance. PLoS ONE, 2012, 7, e45111.	2.5	10
99	Towards standardization of in vivo thrombosis studies in mice. Journal of Thrombosis and Haemostasis, 2011, 9, 1641-1644.	3.8	14
100	Novel Function of Tenascin-C, a Matrix Protein Relevant to Atherosclerosis, in Platelet Recruitment and Activation Under Flow. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 117-124.	2.4	36
101	Mutation and ADAMTS13-dependent modulation of disease severity in a mouse model for von Willebrand disease type 2B. Blood, 2010, 115, 4870-4877.	1.4	60
102	Arterial thrombosis: relevance of a model with two levels of severity assessed by histologic, ultrastructural and functional characterization. Journal of Thrombosis and Haemostasis, 2010, 8, 173-184.	3.8	75
103	Two residues in the activation peptide domain contribute to the half-life of factor X in vivo. Journal of Thrombosis and Haemostasis, 2010, 8, 1651-1653.	3.8	10
104	von Willebrand factor clearance does not involve proteolysis by ADAMTS-13. Journal of Thrombosis and Haemostasis, 2010, 8, 2338-2340.	3.8	17
105	Factor VIII and von Willebrand factor – too sweet for their own good. Haemophilia, 2010, 16, 194-199.	2.1	49
106	Binding of von Willebrand Factor to Collagen and Glycoprotein Ibα, But Not to Glycoprotein IIb/IIIa, Contributes to Ischemic Stroke in Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1949-1951.	2.4	63
107	In vivo MRI and ex vivo quantification of iron and Kupffer cells demonstrate residual phagocytic activity in mouse liver after a gadolinium chloride injection. Biochimie, 2010, 92, 1343-1353.	2.6	3
108	Efficient Inhibition of Collagen-Induced Platelet Activation and Adhesion by LAIR-2, a Soluble Ig-Like Receptor Family Member. PLoS ONE, 2010, 5, e12174.	2.5	24

#	Article	IF	CITATIONS
109	Mouse models of von Willebrand disease. Journal of Thrombosis and Haemostasis, 2009, 7, 61-64.	3.8	10
110	Molecular characterization of Iranian patients with type 3 von Willebrand disease. Haemophilia, 2009, 15, 1058-1064.	2.1	11
111	von Willebrand factor is a major determinant of ADAMTS-13 decrease during mouse sepsis induced by cecum ligation and puncture. Journal of Thrombosis and Haemostasis, 2009, 7, 843-850.	3.8	40
112	Models for Prediction of Factor VIII Half-Life in Severe Haemophiliacs: Distinct Approaches for Blood Group O and Non-O Patients. PLoS ONE, 2009, 4, e6745.	2.5	56
113	Cellular uptake of C4bâ€binding protein is mediated by heparan sulfate proteoglycans and CD91/LDL receptorâ€related protein. European Journal of Immunology, 2008, 38, 809-817.	2.9	25
114	Correction of Bleeding Symptoms in von Willebrand Factor–Deficient Mice by Liver-Expressed von Willebrand Factor Mutants. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 419-424.	2.4	35
115	Pas de deux between VWF and ADAMTS13. Blood, 2008, 111, 3306-3307.	1.4	0
116	Altered thrombus formation in von Willebrand factor–deficient mice expressing von Willebrand factor variants with defective binding to collagen or GPIIbIIIa. Blood, 2008, 112, 603-609.	1.4	67
117	Macrophages contribute to the cellular uptake of von Willebrand factor and factor VIII in vivo. Blood, 2008, 112, 1704-1712.	1.4	131
118	Clearance of von Willebrand factor. Thrombosis and Haemostasis, 2008, 99, 271-278.	3.4	45
119	Platelet Adhesion Receptors and Their Ligands in Mouse Models of Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 728-739.	2.4	107
120	Staphylococcal superantigen-like 5 binds PSGL-1 and inhibits P-selectin–mediated neutrophil rolling. Blood, 2007, 109, 2936-2943.	1.4	163
121	Variations in glycosylation of von Willebrand factor with O-linked sialylated T antigen are associated with its plasma levels. Blood, 2007, 109, 2430-2437.	1.4	61
122	Correction of the bleeding time in von Willebrand factor (VWF)–deficient mice using murine VWF. Blood, 2007, 109, 2267-2268.	1.4	19
123	Role of von Willebrand factor in tumor metastasis. Thrombosis Research, 2007, 120, S64-S70.	1.7	76
124	Clearance mechanisms of von Willebrand factor and factor VIII. Journal of Thrombosis and Haemostasis, 2007, 5, 1353-1360.	3.8	131
125	von Willebrand factor A1 domain: stuck in the middle. Journal of Thrombosis and Haemostasis, 2007, 5, 1361-1362.	3.8	4
126	Characterization of the interaction between von Willebrand factor and osteoprotegerin. Journal of Thrombosis and Haemostasis, 2007, 5, 1956-1962.	3.8	60

#	Article	IF	CITATIONS
127	P-selectin glycoprotein ligand 1 and β2-integrins cooperate in the adhesion of leukocytes to von Willebrand factor. Blood, 2006, 108, 3746-3752.	1.4	152
128	Increased metastatic potential of tumor cells in von Willebrand factorâ€deficient mice. Journal of Thrombosis and Haemostasis, 2006, 4, 519-526.	3.8	96
129	Cysteine-mutations in von Willebrand factor associated with increased clearance. Journal of Thrombosis and Haemostasis, 2005, 3, 2228-2237.	3.8	80
130	In Vivo Clearance of Human Protein S in a Mouse Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 2209-2215.	2.4	19
131	An Experimental Model to Study the in Vivo Survival of von Willebrand Factor. Journal of Biological Chemistry, 2004, 279, 12102-12109.	3.4	132
132	Von Willebrand factor C1C2 domain is involved in platelet adhesion to polymerized fibrin at high shear rate. Blood, 2004, 103, 1741-1746.	1.4	38
133	The Clearance Mechanism of Chilled Blood Platelets. Cell, 2003, 112, 87-97.	28.9	394
134	Von Willebrand factor in vascular pathophysiology. Pathologie Et Biologie, 2003, 51, 395-396.	2.2	7
135	Elevated plasma von Willebrand factor in a murine model of severe hyperhomocysteinemia. Thrombosis and Haemostasis, 2003, 90, 362-363.	3.4	9
136	The α-Chains of C4b-binding Protein Mediate Complex Formation with Low Density Lipoprotein Receptor-related Protein. Journal of Biological Chemistry, 2002, 277, 2511-2516.	3.4	20
137	Complete Defect in vWF-cleaving Protease Activity Associated with Increased Shear-induced Platelet Aggregation in Thrombotic Microangiopathy. Thrombosis and Haemostasis, 2002, 87, 808-811.	3.4	19
138	Molecular and Cellular Biology of von Willebrand Factor. International Journal of Hematology, 2002, 75, 3-8.	1.6	81
139	CD40L stabilizes arterial thrombi by a β3 integrin–dependent mechanism. Nature Medicine, 2002, 8, 247-252.	30.7	698
140	Interleukin 11 significantly increases plasma von Willebrand factor and factor VIII in wild type and von Willebrand disease mouse models. Blood, 2001, 97, 465-472.	1.4	46
141	Localized reduction of atherosclerosis in von Willebrand factor–deficient mice. Blood, 2001, 98, 1424-1428.	1.4	188
142	Defect in regulated secretion of P-selectin affects leukocyte recruitment in von Willebrand factor-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 4072-4077.	7.1	154
143	Plaquettes et endothélium: un mariage de raison Medecine/Sciences, 2001, 17, 252.	0.2	0
144	Involvement of low-density lipoprotein receptor-related protein (LRP) in the clearance of factor VIII in von Willebrand factor–deficient mice. Blood, 2000, 95, 1703-1708.	1.4	81

#	Article	IF	CITATIONS
145	P-Selectin Glycoprotein Ligand 1 (Psgl-1) Is Expressed on Platelets and Can Mediate Platelet–Endothelial Interactions in Vivo. Journal of Experimental Medicine, 2000, 191, 1413-1422.	8.5	388
146	Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. Journal of Clinical Investigation, 2000, 106, 385-392.	8.2	422
147	Insights from von Willebrand disease animal models. Cellular and Molecular Life Sciences, 1999, 56, 977-990.	5.4	40
148	Carboxypeptidase E does not mediate von Willebrand factor targeting to storage granules. European Journal of Cell Biology, 1999, 78, 884-891.	3.6	4
149	A mouse model of severe von Willebrand disease: Defects in hemostasis and thrombosis. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9524-9529.	7.1	479
150	Localization of von Willebrand factor binding domains to endothelial extracellular matrix and to type VI collagen Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 1993, 13, 398-406.	3.9	68