
David H Parker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7322734/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen. Review of Scientific Instruments, 1997, 68, 3477-3484.	1.3	2,445
2	Imaging the dynamics of gas phase reactions. Physical Chemistry Chemical Physics, 2006, 8, 26-53.	2.8	269
3	Oriented Molecule Beams Via the Electrostatic Hexapole: Preparation, Characterization, and Reactive Scattering. Annual Review of Physical Chemistry, 1989, 40, 561-595.	10.8	259
4	Photoelectron and photofragment velocity map imaging of state-selected molecular oxygen dissociation/ionization dynamics. Journal of Chemical Physics, 1997, 107, 2357-2362.	3.0	222
5	Energy partitioning following photodissociation of methyl iodide in the A band: A velocity mapping study. Journal of Chemical Physics, 1999, 110, 832-844.	3.0	190
6	Methyl iodide A-band decomposition study by photofragment velocity imaging. Journal of Chemical Physics, 1998, 109, 4758-4767.	3.0	188
7	Ethylene Production by <i>Botrytis cinerea</i> In Vitro and in Tomatoes. Applied and Environmental Microbiology, 2002, 68, 5342-5350.	3.1	173
8	Coherent cavity ring down spectroscopy. Chemical Physics Letters, 1994, 217, 112-116.	2.6	159
9	Photoacoustic spectroscopy using quantum-cascade lasers. Optics Letters, 1999, 24, 178.	3.3	140
10	Photofragment imaging: The 266 nm photodissociation of CH3I. Chemical Physics Letters, 1989, 156, 151-158.	2.6	133
11	Photofragment imaging: the 266-nm photolysis of CD3I. The Journal of Physical Chemistry, 1990, 94, 4839-4846.	2.9	95
12	Imaging the pair-correlated excitation function: The F+CH4→HF(v′)+CH3(ν=0) reaction. Journal of Chemical Physics, 2004, 120, 117-122.	3.0	82
13	Analysis of the steric dependence of the CH3I + Rb reaction using a legendre expansion technique. Chemical Physics, 1982, 71, 353-361.	1.9	76
14	Laser Photochemistry of Molecular Oxygen. Accounts of Chemical Research, 2000, 33, 563-571.	15.6	74
15	Production of maximally aligned O(1D) atoms from two-step photodissociation of molecular oxygen. Journal of Chemical Physics, 1998, 108, 1305-1308.	3.0	73
16	Dynamics of Acetaldehyde Production during Anoxia and Post-Anoxia in Red Bell Pepper Studied by Photoacoustic Techniques. Plant Physiology, 1997, 113, 925-932.	4.8	72
17	Spin-orbit branching ratios for the Cl atom photofragments following the excitation of Cl2 from 310 to 470 nm. Journal of Chemical Physics, 1999, 110, 5201-5207.	3.0	72
18	Angular distributions for photodissociation of O2 in the Herzberg continuum. Journal of Chemical Physics, 1998, 108, 7229-7243.	3.0	70

#	Article	IF	CITATIONS
19	Reactive asymmetry of methyl iodide. The crossed-beam reaction of oriented methyl iodide with rubidium. The Journal of Physical Chemistry, 1981, 85, 466-468.	2.9	67
20	Rotational alignment of the methyl-d3 fragment from the 266-nm photodissociation of methyl-d3 iodide. The Journal of Physical Chemistry, 1991, 95, 8007-8013.	2.9	66
21	On-line laser photoacoustic detection of ethene in exhaled air as biomarker of ultraviolet radiation damage of the human skin. Applied Physics Letters, 1999, 74, 1761-1763.	3.3	60
22	Dynamics of molecular stereochemistry via oriented molecule scattering. The Journal of Physical Chemistry, 1987, 91, 5427-5437.	2.9	59
23	A new high intensity and short-pulse molecular beam valve. Review of Scientific Instruments, 2013, 84, 023102.	1.3	57
24	Steric properties of the reactive system calcium(1D2) + fluoromethane (JKM) .fwdarw. calcium fluoride (A) + methyl. The Journal of Physical Chemistry, 1991, 95, 8142-8153.	2.9	54
25	Multiphoton ionization and twoâ€photon fluorescence excitation spectroscopy of triethylenediamine. Journal of Chemical Physics, 1979, 71, 1241-1246.	3.0	53
26	Observation of Autler-Townes splitting in the multiphoton ionization ofH2: Measurement of vibronic transition moments between excited electronic states. Physical Review A, 1987, 36, 4107-4110.	2.5	52
27	Multiphoton ionization spectrum of transâ€hexatriene in the 6.2 eV region. Journal of Chemical Physics, 1976, 65, 5534-5535.	3.0	51
28	Multiphoton ionization spectra of two caged amines. Chemical Physics Letters, 1978, 53, 515-520.	2.6	49
29	Mass-resolved laser ionization spectroscopy of HCl. Chemical Physics Letters, 1987, 137, 414-420.	2.6	48
30	Two-dimensional Imaging of Photofragments. Laser Chemistry, 1988, 9, 27-46.	0.5	48
31	Taming molecular collisions using electric and magnetic fields. Chemical Society Reviews, 2014, 43, 7279-7294.	38.1	47
32	Perspective: Advanced particle imaging. Journal of Chemical Physics, 2017, 147, 013601.	3.0	44
33	Photofragment alignment from the photodissociation of HCl and HBr. Chemical Physics Letters, 2002, 364, 115-120.	2.6	43
34	Controlling rotational state distributions using two-pulse stimulated Raman excitation. Physical Review A, 2007, 76, .	2.5	43
35	Laser ionization spectroscopy of CD3 via the 3pz 2Aâ€~2 Rydberg state. Journal of Chemical Physics, 1989, 90, 60-67.	3.0	42
36	Slicing Using a Conventional Velocity Map Imaging Setup: O2, I2, and I2+Photodissociationâ€. Journal of Physical Chemistry A, 2004, 108, 8100-8105.	2.5	42

#	Article	IF	CITATIONS
37	High Rydberg states of DABCO: Spectroscopy, ionization potential, and comparison with mass analyzed threshold ionization. Journal of Chemical Physics, 1996, 104, 4357-4364.	3.0	41
38	State-to-state differential and relative integral cross sections for rotationally inelastic scattering of H2O by hydrogen. Journal of Chemical Physics, 2011, 134, 204308.	3.0	41
39	Determination of excited state lifetimes and ionization potentials by dual beam visible lasers. Chemical Physics, 1979, 42, 379-387.	1.9	40
40	Iron monoxide photodissociation. Journal of Chemical Physics, 2005, 122, 084302.	3.0	39
41	Photoelectron and Photofragment Velocity Imaging Following the Excitation of CH3I to the A-Band Using fs, ps, and ns Laser Pulses. Journal of Physical Chemistry A, 1999, 103, 6106-6113.	2.5	38
42	Polarized emission from the products of oriented reactants: The Ba+N2O→BaO*+N2 reaction. Journal of Chemical Physics, 1986, 85, 5372-5373.	3.0	37
43	UV photodissociation of the van der Waals dimer (CH3I)2 revisited: Pathways giving rise to ionic features. Journal of Chemical Physics, 2005, 122, 204301.	3.0	37
44	REMPI spectroscopy and predissociation of the $Clf1B1(v = 0)$ rotational levels of H2O, HOD and D2O. Physical Chemistry Chemical Physics, 2010, 12, 13983.	2.8	37
45	Above-Threshold Effects in the Photodissociation and Photoionization of Iodobenzeneâ€. Journal of Physical Chemistry A, 2001, 105, 2270-2280.	2.5	35
46	Direct measurement of rotational energy transfer rate constants for H35Cl (v=1). Journal of Chemical Physics, 1987, 87, 5229-5237.	3.0	34
47	Imaging CO ₂ Photodissociation at 157 nm: State-to-State Correlations between CO(ν) and O(³ P _{<i>j</i>=0,1,2}). Journal of Physical Chemistry Letters, 2010, 1, 1861-1865.	4.6	34
48	Photodissociation of singlet oxygen in the UV region. Physical Chemistry Chemical Physics, 2014, 16, 3305.	2.8	33
49	Symmetry assignment of twoâ€photon states from polarization characteristics of multiphoton ionization spectra. Journal of Chemical Physics, 1978, 68, 5661-5663.	3.0	32
50	Steric Effects on Electronically Excited Product Channels in Reactions between Ca(1D2) and CH3X(JKM) (X = Cl, Br)â€. The Journal of Physical Chemistry, 1996, 100, 16066-16071.	2.9	32
51	Dissociative multiphoton ionization of NO[sub 2] studied by time-resolved imaging. Journal of Chemical Physics, 2004, 121, 7776.	3.0	31
52	Photodissociation of hydrogen iodide in the A-band region 273–288 nm. Journal of Chemical Physics, 2002, 117, 9347-9352.	3.0	30
53	Experimental Evidence for Ultrafast Electronic Relaxation in Molecules, Mediated by Diffuse States. Journal of the American Chemical Society, 2005, 127, 16529-16534.	13.7	30
54	Direct mapping of recoil in the ion-pair dissociation of molecular oxygen by a femtosecond depletion method. Journal of Chemical Physics, 2008, 129, 214306.	3.0	30

#	Article	IF	CITATIONS
55	Inelastic scattering of hydroxyl radicals with helium and argon by velocity-map imaging. Nature Chemistry, 2012, 4, 985-989.	13.6	29
56	O2â^'O2 and O2â^'N2 collision-induced absorption mechanisms unravelled. Nature Chemistry, 2018, 10, 549-554.	13.6	29
57	(2+1) Resonance-enhanced ionization spectroscopy of a state-selected beam of OH radicals. Journal of Chemical Physics, 2005, 123, 074309.	3.0	28
58	Cluster-enhanced X–O2 photochemistry (X=CH3I, C3H6, C6H12, and Xe). Journal of Chemical Physics, 2007, 126, 124316.	3.0	28
59	Communication: Mapping water collisions for interstellar space conditions. Journal of Chemical Physics, 2010, 133, 131103.	3.0	28
60	Molecular collisions coming into focus. Physical Chemistry Chemical Physics, 2014, 16, 15768-15779.	2.8	28
61	Photodissociation Imaging of Diatomic Sulfur (S ₂). Journal of Physical Chemistry A, 2009, 113, 14995-15005.	2.5	26
62	Translational energy dependence of the steric effect: oriented N2O + Ba .fwdarw. BaO + N2 reaction. The Journal of Physical Chemistry, 1986, 90, 552-554.	2.9	25
63	State-to-state resolved differential cross sections for rotationally inelastic scattering of ND ₃ with He. Physical Chemistry Chemical Physics, 2014, 16, 477-488.	2.8	25
64	Imaging the Inelastic Scattering of Water with Helium. Comparison of Experiment and Theory. Journal of Physical Chemistry A, 2010, 114, 9886-9892.	2.5	24
65	On-line monitoring of nitrogenase activity in cyanobacteria by sensitive laser photoacoustic detection of ethylene. Applied and Environmental Microbiology, 1997, 63, 4243-4251.	3.1	24
66	High-Resolution Ion-Imaging Studies of the Photodissociation of the BrCl+Cationâ€. Journal of Physical Chemistry A, 2004, 108, 8077-8083.	2.5	23
67	Photolysis of NO2 at multiple wavelengths in the spectral region 200–205Ânm. European Physical Journal D, 2006, 38, 151-162.	1.3	23
68	LASER PHOTOACOUSTIC TRACE GAS DETECTION, AN EXTREMELY SENSITIVE TECHNIQUE APPLIED IN BIOLOGICAL RESEARCH. Instrumentation Science and Technology, 1998, 26, 157-175.	1.8	22
69	Photophysics of O2 excited by tunable laser radiation around 193 nm. Journal of Chemical Physics, 2000, 112, 4037-4044.	3.0	22
70	Ion Recoil Following (2+1) REMPI of Nascent Atoms ―The Effect on Nascent Velocity Distributions in Velocity Map Imaging. Journal of the Chinese Chemical Society, 2001, 48, 327-332.	1.4	22
71	Unusual Quantum Interference in the S ₁ State of DABCO and Observation of Intramolecular Vibrational Redistribution. Journal of Physical Chemistry A, 2010, 114, 3313-3319.	2.5	22
72	Photodissociation dynamics of the A Σ2+ state of SH and SD radicals. Journal of Chemical Physics, 2009, 130, 034307.	3.0	21

#	Article	IF	CITATIONS
73	Product pair correlation in CH ₃ OH photodissociation at 157 nm: the OH + CH ₃ channel. Physical Chemistry Chemical Physics, 2011, 13, 2350-2355.	2.8	21
74	Velocity map imaging study of OCS photodissociation followed by S(1S) autoionization at 157 nm. Molecular Physics, 2005, 103, 1797-1807.	1.7	20
75	State-to-state inelastic scattering of OH by HI: A comparison with OH–HCl and OH–HBr. Journal of Chemical Physics, 2007, 126, 124302.	3.0	20
76	Reactant orientation-product polarization correlations. Collision energy dependence in the Ba + N2O ? BaO*+ N2 reaction. Journal of the Chemical Society, Faraday Transactions 2, 1989, 85, 1115.	1.1	19
77	Completely inverted ClO vibrational distribution from OClO(2A2 24,0,0). Journal of Chemical Physics, 2000, 112, 5298-5300.	3.0	19
78	The substitution reactions RH+O2→RO2+H: transition state theory calculations based on the ab initio and DFT potential energy surface. Chemical Physics Letters, 2004, 385, 486-490.	2.6	19
79	Photodissociation of van der Waals clusters of isoprene with oxygen, C5H8â^'O2, in the wavelength range 213–277 nm. Journal of Chemical Physics, 2012, 137, 054305.	3.0	19
80	Velocity map imaging and REMPI study of the photodissociation of CH3SCH3 from the first absorption band. Chemical Physics Letters, 2000, 325, 146-152.	2.6	18
81	Imaging the Pair-Correlated HNCO Photodissociation: The NH(<i>a</i> ¹ î") + CO(X ¹ î£ ⁺) Channel. Journal of Physical Chemistry A, 2014, 118, 2413-2418.	2.5	18
82	Rotationally inelastic scattering of ND ₃ with H ₂ as a probe of the intermolecular potential energy surface. Molecular Physics, 2015, 113, 3925-3933.	1.7	18
83	Saturation in laser-induced fluorescence: effect on alignment parameters. Chemical Physics, 1987, 113, 357-382.	1.9	17
84	Proton production in one- and two-color laser ionization and dissociation of molecular hydrogen. The Journal of Physical Chemistry, 1988, 92, 3701-3705.	2.9	17
85	Ab initio study of isomers of neutral and ionized van der Waals dimer (CH3I)2. Chemical Physics Letters, 2003, 376, 395-402.	2.6	17
86	Short-wavelength photolysis of jet-cooled OClO(2A2 î½1>20)→ClO(X 2lΩ,v,J)+O(3PJ). Journal of Chemi Physics, 2001, 114, 8339-8346.	cal 3.0	16
87	Photofragment alignment in the photodissociation of I2 from 450to510nm. Journal of Chemical Physics, 2006, 124, 024315.	3.0	16
88	Photodissociation of vibrationally excited SH and SD radicals at 288 and 291nm: The S(D21) channel. Journal of Chemical Physics, 2007, 126, 094304.	3.0	16
89	CO Laser Absorption Coefficients for Gases of Biological Relevance: H2O, CO2, Ethanol, Acetaldehyde, and Ethylene. Applied Spectroscopy, 2000, 54, 62-71.	2.2	15
90	Photodissociation of the OD radical at 226 and 243 nm. Journal of Chemical Physics, 2003, 119, 9341-9343.	3.0	15

#	Article	IF	CITATIONS
91	Photodissociation of vibrationally excited OH/OD radicals. Molecular Physics, 2008, 106, 557-572.	1.7	15
92	Singlet oxygen photogeneration from X–O ₂ van der Waals complexes: double spin-flip vs. charge-transfer mechanism. Physical Chemistry Chemical Physics, 2015, 17, 28565-28573.	2.8	15
93	The sequential two photon dissociation of NO as a source of aligned N(2D), N(4S) and O(3P) atoms. Chemical Physics Letters, 1998, 283, 319-325.	2.6	14
94	Nonresonant photofragmentation/ionization dynamics of O2 using picosecond and femtosecond laser pulses at 248 nm. Journal of Chemical Physics, 2000, 112, 5654-5659.	3.0	14
95	Inelastic Scattering of CO with He: Polarization Dependent Differential State-to-State Cross Sections. Journal of Physical Chemistry A, 2015, 119, 12526-12537.	2.5	14
96	Photodissociation dynamics of excited by 193 nm light. Chemical Physics Letters, 2000, 330, 293-299.	2.6	13
97	Observation of Direct Dissociative Ionization in Molecular Hydrogen. Physical Review Letters, 2001, 86, 3272-3275.	7.8	13
98	Photodissociation of the linear Ar–I2 van der Waals complex: Velocity-map imaging of the I2 fragment. Journal of Chemical Physics, 2009, 130, 104302.	3.0	13
99	Imaging CH3SH photodissociation at 204 nm: the SH + CH3 channel. Physical Chemistry Chemical Physics, 2011, 13, 8531.	2.8	13
100	Molecular square dancing in CO-CO collisions. Science, 2020, 369, 307-309.	12.6	13
101	Resonance-enhanced multiphoton ionization spectroscopy of ABCO and ABCU: core splitting of the 3p Rydberg orbitals. The Journal of Physical Chemistry, 1984, 88, 6087-6089.	2.9	12
102	Wavelength dependence of the BaO* product chemiluminescence on the N2O reactant orientation in the Ba + N2O → BaO* + N2 reaction. Chemical Physics Letters, 1987, 140, 215-220.	2.6	11
103	Rotationally inelastic scattering of OH (Î3â^•22, v=0, J=3â^•2, f) by HBr (Σ1, v=0, J<4). Journal of Chemical Physics, 2006, 125, 204315.	3.0	11
104	Imaging molecular dynamics. Physical Chemistry Chemical Physics, 2014, 16, 381-382.	2.8	11
105	Imaging state-to-state reactive scattering in the Ar+ + H2 charge transfer reaction. Journal of Chemical Physics, 2017, 147, 013940.	3.0	11
106	Double-resonance laser-ionization spectroscopy of molecular hydrogen in the region of the second dissociation limit. The Journal of Physical Chemistry, 1987, 91, 2035-2037.	2.9	10
107	High-resolution laser-induced fluorescence study of a cage molecule, 1,4-diazabicyclo [2,2,2] octane, DABCO. Chemical Physics, 1993, 174, 267-276.	1.9	10
108	Crossed-beam velocity map imaging of collisional autoionization processes. Journal of Chemical Physics, 2000, 113, 7728-7730.	3.0	10

#	Article	IF	CITATIONS
109	Ultraviolet photodissociation of the van der Waals dimer (CH3I)2 revisited. II. Pathways giving rise to neutral molecular iodine. Journal of Chemical Physics, 2006, 125, 133303.	3.0	10
110	Photodissociation dynamics of acetylene via the C̃ Î1u electronic state. Journal of Chemical Physics, 2010, 133, 014307.	3.0	10
111	Angular momentum polarisation in the O(¹ D) products of O ₂ photolysis via the B state. Molecular Physics, 2010, 108, 1145-1157.	1.7	10
112	A large aperture magnification lens for velocity map imaging. Review of Scientific Instruments, 2011, 82, 013301.	1.3	10
113	Rotational excitation of HDO and D2O by H2: Experimental and theoretical differential cross-sections. Journal of Chemical Physics, 2013, 138, 024314.	3.0	10
114	Rotationally Inelastic Scattering of Quantum-State-Selected ND ₃ withÂAr. Journal of Physical Chemistry A, 2015, 119, 5979-5987.	2.5	10
115	Direct Extraction of Alignment Moments from Inelastic Scattering Images. Journal of Physical Chemistry A, 2015, 119, 5925-5931.	2.5	10
116	Hot-band study of DABCO using resonant multiphoton optogalvanic spectroscopy. The Journal of Physical Chemistry, 1986, 90, 219-222.	2.9	9
117	Two-photon dissociation of NO near 275 nm investigated by velocity map imaging. Chemical Physics Letters, 1998, 294, 565-570.	2.6	9
118	Photodissociation of superexcited states of hydrogen iodide: A photofragment imaging study using resonant multiphoton excitation at 13.39 and 15.59 eV. Canadian Journal of Physics, 2001, 79, 211-227.	1.1	9
119	Photodissociation–ionization dynamics of molecular chlorine Rydberg states using velocity map imaging. Journal of Chemical Physics, 2001, 115, 1205-1212.	3.0	9
120	Velocity Mapping of Multiphoton Excited Molecules. Advances in Photochemistry, 2007, , 59-106.	0.4	9
121	State-to-State Inelastic Scattering of O ₂ with Helium. Journal of Physical Chemistry A, 2016, 120, 868-874.	2.5	9
122	Weakly Bound Environment of Molecular Oxygen as a Catalyst of Photooxidation. Kinetics and Catalysis, 2020, 61, 174-197.	1.0	9
123	DABCO: an investigation of the vibrational structured of the SO and S1 state through two-photon LIF measurements. Chemical Physics, 1992, 163, 223-239.	1.9	8
124	Spectroscopy of DABCO-rare-gas and DABCO-DABCO van der Waals complexes. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1993, 27, 73-78.	1.0	8
125	Experimental measurement of the van der Waals binding energy of X–O2 clusters (X=Xe,CH3I,C3H6,C6H12). Journal of Chemical Physics, 2010, 133, 194306.	3.0	8
126	Control and imaging of O(1D2) precession. Nature Chemistry, 2011, 3, 28-33.	13.6	8

#	Article	IF	CITATIONS
127	Photodissociation of Methyl Iodide and Methyl Iodide Clusters at 193 nm. Journal of Physical Chemistry C, 2013, 117, 22383-22390.	3.1	8
128	Analysis of velocity-mapped ion images from high-resolution crossed-beam scattering experiments: a tutorial review. EPJ Techniques and Instrumentation, 2015, 2, 11.	1.3	7
129	A simple resonance enhanced laser ionization scheme for CO via the A1Î state. Journal of Chemical Physics, 2017, 147, 013909.	3.0	7
130	Double-resonance measurements of vibrational levels populated by infrared multiphoton excitation of CF3I in a molecular beam. Chemical Physics Letters, 1993, 215, 461-469.	2.6	6
131	Predissociation of the A2Σ+ (v′ = 3) state of the OH radical. Physical Chemistry Chemical Physics, 2009, 11, 4754.	2.8	6
132	Hot molecules—off the beaten path. Science, 2014, 346, 30-31.	12.6	6
133	Communication: State-to-state inelastic scattering of interstellar O2 with H2. Journal of Chemical Physics, 2018, 149, 121101.	3.0	6
134	Photodissociation dynamics of HI and DI at 157nm. Chemical Physics Letters, 2007, 449, 18-22.	2.6	5
135	Evolutionary optimization of rotational population transfer. Physical Review A, 2011, 84, .	2.5	5
136	Collision energy dependence of state-to-state differential cross sections for rotationally inelastic scattering of H ₂ 0 by He. Physical Chemistry Chemical Physics, 2017, 19, 4678-4687.	2.8	5
137	Laser ionization spectroscopy of diazabicyclo[3.3.3]undecane. The Journal of Physical Chemistry, 1988, 92, 5436-5438.	2.9	4
138	Velocity Mapping Studies of Vibrational Energy Disposal Following Methyl Iodide Photodissociation. Journal of the Chinese Chemical Society, 1999, 46, 513-517.	1.4	4
139	Multiphoton dynamics of H2 with 248 nm picosecond and femtosecond pulses. Journal of Chemical Physics, 2000, 113, 9044-9050.	3.0	4
140	IR excitation of ethylene molecules and clusters embedded in 4He droplets. Journal of Chemical Physics, 2001, 114, 9463-9469.	3.0	4
141	Ionic Pathways following UV Photoexcitation of the (HI) ₂ van der Waals Dimer. Journal of Physical Chemistry A, 2010, 114, 3067-3073.	2.5	4
142	Imaging the inelastic scattering of vibrationally excited NO (v = 1) with Ar. Chemical Physics Letters, 2018, 692, 124-128.	2.6	4
143	Velocity imaging: applications in molecular oxygen photophysics. , 1998, 3271, 177.		3
144	Angular distributions and angular momentum alignment of O(3PJ) atoms formed in the photolysis of O2via the Herzberg continuum. Physical Chemistry Chemical Physics, 2010, 12, 15715.	2.8	3

1

111 It is labeled and it is and the case of partial isotopic substitution: the Bif case of case	#	Article	IF	CITATIONS
146 142, 034309. 0.00 3 147 Imaging multiphoton ionization and dissociation of rotationally warm CO via the B+IE1 and EI1 3.0 3 148 photodissociation of Scubb 2(slub) (Ksupp36, 2017, 147, 013906. 2.5 3 148 photodissociation of Scubb 2(slub) (Ksupp36, subp36,	145		2.8	3
117 electronic states. Journal of Chemical Physics, 2017, 147, 01 3906. 3-0 3 118 Photodissociation of Scubb 24 (subb (Xcsup) 34 (subb) 35 (subb) 36" (subb) 36" (subb), 31" [ETQq 00 0 rgBT [Overlock 10 Tf 50 627 Td (journal of Physical Chemistry A 2019, 123, 6886-6896. 2.5 3 119 Collision-induced absorption between Ocsubb 24 (subb) 24 (subb	146		3.0	3
148 2.5 3 149 Journal of Physical Chemistry A, 2019, 123, 6886-6896. 2.5 3 149 Collision-induced absorption between O (sub) 2 (sub) 2 (sub) 24 (sub	147		3.0	3
140 arsup:14/sup?s/sub/s(2/b) (2) at 2, at 3, a	148			
100 Physics, 2019, 21, 14278-14283. 2.8 3 151 Imaging inelastic scattering of CO with argon: polarization dependent differential cross sections. 2.8 3 152 A compact electrostatic lens for velocity map imaging experiments. Molecular Physics, 2022, 120, . 1.7 3 153 Laser ionisation detection of O(^{3 (sup> (DPC)) sub> (DPC)) sub> (DPC) (DPC) sub> (DPC)) sub> (DPC). 1.7 3 154 Dynamics and vector correlations of vacuum ultraviolet (VUV) photodissociation of CO (sub> 2 (sub> 2.4 sub> (DPC)) sub> (DPC). 2.8 3 154 Dynamics and vector correlations of vacuum ultraviolet (VUV) photodissociation of CO (sub> 2 (sub> 2.8 3 155 LF-analysis on the S1 Å× SO transition of DABCO: accememory effecta6-and vibrational structure. Chemical Physics, 1992, 165, 397-003. 1.9 2 156 Comment on acceUnraveling the mysteries of metastable O4*a6-(J. Chem. Phys. 110, 6095 (1999)], Journal of Chemical Physics, 2004, 120, 6794-6796. 3.0 2 157 Pulsed source of metal atoms and their compounds. Review of Scientific Instruments, 2005, 76, 026102. 1.3 2 158 accentresion substitutiona6-reactions with participation of molecular oxygen; ZH31 + 02 âf' 02ZH3 + 1 (Z = C,) IJ EDQ0 0 QrgBT /OVE 2.5 2 159 Femtosecond 2 + 1 Resonance-Enhanced Multiphot}	149	a ¹ Î" _g (<i>v</i> = 1) ↕X ³ Σâ^'g (<i>v</i> = 0) transition of molecular	2.8	3
151 Physical Chemistry Chemical Physics, 2019, 21, 9200-9211. 2.58 3 152 A compact electrostatic lens for velocity map imaging experiments. Molecular Physics, 2022, 120, . 1.7 3 153 Laser ionisation detection of O(^{3 ()> (>()> (>()>}	150	Detection of the O2 A′3ΔU Herzberg III state by photofragment imaging. Physical Chemistry Chemical Physics, 2019, 21, 14278-14283.	2.8	3
153Laser ionisation detection of $O(\langle sup \rangle 3 \langle jsup \rangle \langle i \rangle P \langle l \rangle \langle sub \rangle 3 \langle jsup \rangle \langle i \rangle P \langle l \rangle \langle sub \rangle 2 \langle jsub \rangle atoms in the VUV;1.73154Dynamics and vector correlations of Vacuum ultraviolet (VUV) photodissociation of CO \langle sub \rangle 2 \langle jsub \rangle2.83154Dynamics and vector correlations of Vacuum ultraviolet (VUV) photodissociation of CO \langle sub \rangle 2 \langle jsub \rangle2.83155LIF-analysis on the S1 Åk S0 transition of DABCO: \hat{a}-comemory effect\hat{a}-and vibrational structure. Chemical1.92156Comment on \hat{a}-could compare the mysteries of metastable O4*\hat{a}-f.J. Chem. Phys. 110, 6095 (1999)]. Journal ofChemical Physics, 2004, 120, 6794-6796.3.02157Pulsed source of metal atoms and their compounds. Review of Scientific Instruments, 2005, 76, 026102.1.32158\hat{a}-coelnversion substitution\hat{a}-reactions with participation of molecular oxygen: ZH3I + O2 \hat{a}^+ O2ZH3 + I (Z = C.) TJ EffQq0 0 QrgBT /Over159Femtosecond 2 + 1 Resonance-Enhanced Multiphoton Ionization Spectroscopy of the C-State inMolecular Oxygen. Journal of Physical Chemistry A, 2021, 125, 9060-9064.2.52160Torsional mode relaxation of DABCO in a seeded supersonic beam. Chemical Physics Letters, 1987, 141,2.5-30.2.61$	151	Imaging inelastic scattering of CO with argon: polarization dependent differential cross sections. Physical Chemistry Chemical Physics, 2019, 21, 9200-9211.	2.8	3
153 application to photodissociation of O ₂ . Molecular Physics, 2022, 120, . 1.7 3 154 Dynamics and vector correlations of vacuum ultraviolet (VUV) photodissociation of CO ₂ 2.8 3 154 Dynamics and vector correlations of vacuum ultraviolet (VUV) photodissociation of CO ₂ 2.8 3 155 UF-analysis on the S1 Å« S0 transition of DABCO: à€œmemory effectà€-and vibrational structure. Chemical Physics, 1992, 165, 397-403. 1.9 2 156 Comment on à€œUnraveling the mysteries of metastable O4*â€-[J. Chem. Phys. 110, 6095 (1999)]. Journal of Chemical Physics, 2004, 120, 6794-6796. 3.0 2 157 Pulsed source of metal atoms and their compounds. Review of Scientific Instruments, 2005, 76, 026102. 1.3 2 158 à€œlnversion substitutionà€-reactions with participation of molecular oxygen: ZH3I + 02 â†' 02ZH3 + I (Z = C,) Tj £JQq0 0 QrgBT /Over 15 159 Femtosecond 2 + 1 Resonance-Enhanced Multiphoton Ionization Spectroscopy of the C-State in Molecular Oxygen. Journal of Physical Chemistry A, 2021, 125, 9060-9064. 2.5 2 160 Torsional mode relaxation of DABCO in a seeded supersonic beam. Chemical Physics Letters, 1987, 141, 2.6 1 160 Ultrafast non-resonant multiphoton preparation of ion-molecule reactions within clusters. Chemical 2 1	152	A compact electrostatic lens for velocity map imaging experiments. Molecular Physics, 2022, 120, .	1.7	3
154 at 155 nm. Physical Chemistry Chemical Physics, 2022, 24, 2592-2600. 2.8 3 155 LIF-analysis on the S1 Åx S0 transition of DABCO: â€cememory effectâ€+and vibrational structure. Chemical 1.9 2 155 LIF-analysis on the S1 Åx S0 transition of DABCO: â€cememory effectâ€+and vibrational structure. Chemical 1.9 2 156 Comment on â€ceUnraveling the mysteries of metastable O4*â€+[]. Chem. Phys. 110, 6095 (1999)]. Journal of 3.0 2 157 Pulsed source of metal atoms and their compounds. Review of Scientific Instruments, 2005, 76, 026102. 1.3 2 158 â€ceInversion substitutionâ€+reactions with participation of molecular oxygen: ZH3I + O2 ât' O2ZH3 + I (Z = C,) Tj EfQq0 0 QrgBT /Ove 159 159 Femtosecond 2 + 1 Resonance-Enhanced Multiphoton Ionization Spectroscopy of the C-State in 2.5 2 160 Torsional mode relaxation of DABCO in a seeded supersonic beam. Chemical Physics Letters, 1987, 141, 2.6 1 161 Ultrafast non-resonant multiphoton preparation of ion-molecule reactions within clusters. Chemical 2.6 1	153	Laser ionisation detection of O(³ <i>P</i> _{<i>j</i>}) atoms in the VUV; application to photodissociation of O ₂ . Molecular Physics, 2022, 120, .	1.7	3
155 Physics, 1992, 165, 397-403. 1.9 2 156 Comment on "Unraveling the mysteries of metastable O4*―[J. Chem. Phys. 110, 6095 (1999)]. Journal of Chemical Physics, 2004, 120, 6794-6796. 3.0 2 157 Pulsed source of metal atoms and their compounds. Review of Scientific Instruments, 2005, 76, 026102. 1.3 2 158 "Inversion substitutionâ€-reactions with participation of molecular oxygen: ZH3I + O2 â†' O2ZH3 + I (Z = C,) TJ FIQq0 0 QrgBT /Over 159 159 Femtosecond 2 + 1 Resonance-Enhanced Multiphoton Ionization Spectroscopy of the C-State in Molecular Oxygen. Journal of Physical Chemistry A, 2021, 125, 9060-9064. 2.5 2 160 Torsional mode relaxation of DABCO in a seeded supersonic beam. Chemical Physics Letters, 1987, 141, 25-30. 2.6 1 160 Ultrafast non-resonant multiphoton preparation of ion-molecule reactions within clusters. Chemical 2.6 1	154		2.8	3
136 Chemical Physics, 2004, 120, 6794-6796. 3.0 2 157 Pulsed source of metal atoms and their compounds. Review of Scientific Instruments, 2005, 76, 026102. 1.3 2 158 "lnversion substitutionâ€-reactions with participation of molecular oxygen: ZH3I + O2 â†' O2ZH3 + I (Z = C,) Tj ETQq0 0 0 grgBT /Ove 159 Femtosecond 2 + 1 Resonance-Enhanced Multiphoton Ionization Spectroscopy of the C-State in Molecular Oxygen. Journal of Physical Chemistry A, 2021, 125, 9060-9064. 2.5 2 160 Torsional mode relaxation of DABCO in a seeded supersonic beam. Chemical Physics Letters, 1987, 141, 2.6 1 161 Ultrafast non-resonant multiphoton preparation of ion-molecule reactions within clusters. Chemical 2.6 1	155		1.9	2
158 "lnversion substitution―reactions with participation of molecular oxygen: ZH3I + O2 â†' O2ZH3 + I (Z = C,) Tj ETQq0 0 QrgBT /Over 159 Femtosecond 2 + 1 Resonance-Enhanced Multiphoton Ionization Spectroscopy of the C-State in Molecular Oxygen. Journal of Physical Chemistry A, 2021, 125, 9060-9064. 2.5 2 160 Torsional mode relaxation of DABCO in a seeded supersonic beam. Chemical Physics Letters, 1987, 141, 2.5-30. 2.6 1 161 Ultrafast non-resonant multiphoton preparation of ion-molecule reactions within clusters. Chemical 0.6 1	156	Comment on "Unraveling the mysteries of metastable O4*―[J. Chem. Phys. 110, 6095 (1999)]. Journal of Chemical Physics, 2004, 120, 6794-6796.	3.0	2
1501601601159Femtosecond 2 + 1 Resonance-Enhanced Multiphoton Ionization Spectroscopy of the C-State in Molecular Oxygen. Journal of Physical Chemistry A, 2021, 125, 9060-9064.2.52160Torsional mode relaxation of DABCO in a seeded supersonic beam. Chemical Physics Letters, 1987, 141, 25-30.2.61161Ultrafast non-resonant multiphoton preparation of ion-molecule reactions within clusters. Chemical2.61	157	Pulsed source of metal atoms and their compounds. Review of Scientific Instruments, 2005, 76, 026102.	1.3	2
Molecular Oxygen. Journal of Physical Chemistry A, 2021, 125, 9060-9064. 2.5 2 160 Torsional mode relaxation of DABCO in a seeded supersonic beam. Chemical Physics Letters, 1987, 141, 2.6 1 161 Ultrafast non-resonant multiphoton preparation of ion-molecule reactions within clusters. Chemical 9.6 1	158	"Inversion substitution―reactions with participation of molecular oxygen: ZH3I + O2 → O2ZH3 + I (Z = C,)	Tj <u>F</u> ŢQq0 (0 QrgBT /Ove
25-30. 2.6 1 Ultrafast non-resonant multiphoton preparation of ion-molecule reactions within clusters. Chemical	159		2.5	2
	160	Torsional mode relaxation of DABCO in a seeded supersonic beam. Chemical Physics Letters, 1987, 141, 25-30.	2.6	1
	161		2.6	1

162 <title>Laser-based detection of trace gases released by crops under long-term storage</title>., 1997,,.

#	Article	IF	CITATIONS
163	Multicomponent trace gas analysis with a CO-laser-based photoacoustic detector: emission of ethanol, acetaldehyde, ethane, and ethylene from fruit. , 1998, , .		1
164	<title>Photoacoustic trace gas detection of ethene released by UV-induced lipid peroxidation in humans</title> . , 2000, , .		1
165	VELOCITY MAPPING STUDIES OF MOLECULAR PHOTODISSOCIATION AND PHOTOIONIZATION DYNAMICS. Advanced Series in Physical Chemistry, 2000, , 3-46.	1.5	1
166	Time resolved observation of multiple electronic configurations in the electronic relaxation of isolated molecules by photoelectron imaging. AIP Conference Proceedings, 2005, , .	0.4	1
167	Resonance enhanced multiphoton ionization spectroscopy of NHD2via the B̃1E′′-state. Physical Chemistry Chemical Physics, 2013, 15, 6390.	2.8	1
168	Measurement of transition moments between molecular excited electronic states using the Autler-Townes effect. AIP Conference Proceedings, 1988, , .	0.4	0
169	CO2 laser photoacoustic monitoring of gas transport in rice using SF6 as a tracer gas. , 1999, , .		0
170	The., 1999, , .		0
171	A CO laser based photoacoustic system applied to the detection of trace gases emitted by conference pears stored at high. , 1999, , .		Ο
172	Laser photoacoustic ethene detection from human air as on-line biomarker for lipid peroxidation. , 1999, , .		0
173	Velocity Map Imaging: Technique and Applications to O2 Photodissociation. ACS Symposium Series, 2000, , 56-67.	0.5	0
174	Saturation in Laser-Induced Fluorescence: Detection of Nascent Product Rotational Angular Momentum Alignment. , 1988, , 311-321.		0
175	Reactive Scattering with Oriented Molecules: Selectivity in the Ba + N2O → BaO* + N2 Reaction. , 1988, , 195-220.		О