
Kevin Pethe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7322668/publications.pdf Version: 2024-02-01

KEVIN DETHE

#	Article	IF	CITATIONS
1	Determination of Bioenergetic Parameters in Mycobacterium ulcerans. Methods in Molecular Biology, 2022, 2387, 219-230.	0.4	0
2	Turbidity-Based MIC Assay and Characterization of Spontaneous Drug Resistant Mutants in Mycobacterium ulcerans. Methods in Molecular Biology, 2022, 2387, 209-217.	0.4	0
3	Polymers as advanced antibacterial and antibiofilm agents for direct and combination therapies. Chemical Science, 2022, 13, 345-364.	3.7	74
4	Telacebec: an investigational antibacterial for the treatment of tuberculosis (TB). Expert Opinion on Investigational Drugs, 2022, 31, 139-144.	1.9	11
5	Sensitivity of <i>Mycobacterium leprae</i> to Telacebec. Emerging Infectious Diseases, 2022, 28, 749-751.	2.0	0
6	Sensitivity of <i>Mycobacterium leprae</i> to Telacebec. Emerging Infectious Diseases, 2022, 28, 749-751.	2.0	8
7	Antimicrobial Effect of a Novel Chitosan Derivative and Its Synergistic Effect with Antibiotics. ACS Applied Materials & amp; Interfaces, 2021, 13, 3237-3245.	4.0	57
8	Structure guided generation of thieno[3,2- <i>d</i>]pyrimidin-4-amine <i>Mycobacterium tuberculosis bd</i> oxidase inhibitors. RSC Medicinal Chemistry, 2021, 12, 73-77.	1.7	17
9	HflX is a GTPase that controls hypoxia-induced replication arrest in slow-growing mycobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	5
10	Mixed-charge pseudo-zwitterionic copolymer brush as broad spectrum antibiofilm coating. Biomaterials, 2021, 273, 120794.	5.7	24
11	The QcrB Inhibitors TB47 and Telacebec Do Not Potentiate the Activity of Clofazimine in Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2021, 65, e0096421.	1.4	0
12	Syntheses and Structure–Activity Relationships of N-Phenethyl-Quinazolin-4-yl-Amines as Potent Inhibitors of Cytochrome bd Oxidase in Mycobacterium tuberculosis. Applied Sciences (Switzerland), 2021, 11, 9092.	1.3	3
13	Dual inhibition of the terminal oxidases eradicates antibioticâ€ŧolerant <i>Mycobacterium tuberculosis</i> . EMBO Molecular Medicine, 2021, 13, e13207.	3.3	47
14	Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis. Nature Communications, 2020, 11, 6092.	5.8	34
15	Telacebec (Q203)-containing intermittent oral regimens sterilized mice infected with Mycobacterium ulcerans after only 16 doses. PLoS Neglected Tropical Diseases, 2020, 14, e0007857.	1.3	10
16	Precisely Structured Nitric-Oxide-Releasing Copolymer Brush Defeats Broad-Spectrum Catheter-Associated Biofilm Infections <i>In Vivo</i> . ACS Central Science, 2020, 6, 2031-2045.	5.3	41
17	Features and Functional Importance of Key Residues of the <i>Mycobacterium tuberculosis</i> Cytochrome <i>bd</i> Oxidase. ACS Infectious Diseases, 2020, 6, 1697-1707.	1.8	11
18	Toward a Single-Dose Cure for Buruli Ulcer. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	16

#	Article	IF	CITATIONS
19	Antituberculosis Activity of the Antimalaria Cytochrome <i>bcc</i> Oxidase Inhibitor SCR0911. ACS Infectious Diseases, 2020, 6, 725-737.	1.8	10
20	Targeting the cytochrome oxidases for drug development in mycobacteria. Progress in Biophysics and Molecular Biology, 2020, 152, 45-54.	1.4	29
21	New 2-Ethylthio-4-methylaminoquinazoline derivatives inhibiting two subunits of cytochrome bc1 in Mycobacterium tuberculosis. PLoS Pathogens, 2020, 16, e1008270.	2.1	38
22	A Glycosylated Cationic Block Poly(βâ€peptide) Reverses Intrinsic Antibiotic Resistance in All ESKAPE Gramâ€Negative Bacteria. Angewandte Chemie, 2020, 132, 6886-6893.	1.6	11
23	Discovery of a Novel Mycobacterial Fâ€ATP Synthase Inhibitor and its Potency in Combination with Diarylquinolines. Angewandte Chemie, 2020, 132, 13397-13406.	1.6	4
24	Oxidative Phosphorylation—an Update on a New, Essential Target Space for Drug Discovery in Mycobacterium tuberculosis. Applied Sciences (Switzerland), 2020, 10, 2339.	1.3	29
25	Discovery of a Novel Mycobacterial Fâ€ATP Synthase Inhibitor and its Potency in Combination with Diarylquinolines. Angewandte Chemie - International Edition, 2020, 59, 13295-13304.	7.2	28
26	A Glycosylated Cationic Block Poly(βâ€peptide) Reverses Intrinsic Antibiotic Resistance in All ESKAPE Gramâ€Negative Bacteria. Angewandte Chemie - International Edition, 2020, 59, 6819-6826.	7.2	63
27	Title is missing!. , 2020, 14, e0007857.		0
28	Title is missing!. , 2020, 14, e0007857.		0
29	Title is missing!. , 2020, 14, e0007857.		0
30	Title is missing!. , 2020, 14, e0007857.		0
31	Title is missing!. , 2020, 14, e0007857.		0
32	Title is missing!. , 2020, 14, e0007857.		0
33	Naturally-Occurring Polymorphisms in QcrB Are Responsible for Resistance to Telacebec in <i>Mycobacterium abscessus</i> . ACS Infectious Diseases, 2019, 5, 2055-2060.	1.8	9
34	Enantiomeric glycosylated cationic block co-beta-peptides eradicate Staphylococcus aureus biofilms and antibiotic-tolerant persisters. Nature Communications, 2019, 10, 4792.	5.8	88
35	Carbon metabolism modulates the efficacy of drugs targeting the cytochrome bc1:aa3 in Mycobacterium tuberculosis. Scientific Reports, 2019, 9, 8608.	1.6	26
36	Active pulmonary targeting against tuberculosis (TB) via triple-encapsulation of Q203, bedaquiline and superparamagnetic iron oxides (SPIOs) in nanoparticle aggregates. Drug Delivery, 2019, 26, 1039-1048.	2.5	17

#	Article	IF	CITATIONS
37	Target Engagement and Binding Mode of an Antituberculosis Drug to Its Bacterial Target Deciphered in Whole Living Cells by NMR. Biochemistry, 2019, 58, 526-533.	1.2	19
38	Inhibitors of energy metabolism interfere with antibiotic-induced death in mycobacteria. Journal of Biological Chemistry, 2019, 294, 1936-1943.	1.6	46
39	Targeting the Mycobacterium ulcerans cytochrome bc1:aa3 for the treatment of Buruli ulcer. Nature Communications, 2018, 9, 5370.	5.8	64
40	Arylvinylpiperazine Amides, a New Class of Potent Inhibitors Targeting QcrB of Mycobacterium tuberculosis. MBio, 2018, 9, .	1.8	52
41	Therapeutic potential of promiscuous targets in Mycobacterium tuberculosis. Current Opinion in Pharmacology, 2018, 42, 22-26.	1.7	25
42	Microbiomes in respiratory health and disease: An Asiaâ€Pacific perspective. Respirology, 2017, 22, 240-250.	1.3	88
43	Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions. Microbiology Spectrum, 2017, 5, .	1.2	89
44	The role of acute and chronic respiratory colonization and infections in the pathogenesis of <scp>COPD</scp> . Respirology, 2017, 22, 634-650.	1.3	143
45	Nanoparticles of Short Cationic Peptidopolysaccharide Self-Assembled by Hydrogen Bonding with Antibacterial Effect against Multidrug-Resistant Bacteria. ACS Applied Materials & Interfaces, 2017, 9, 38288-38303.	4.0	67
46	Bedaquiline Inhibits the ATP Synthase in Mycobacterium abscessus and Is Effective in Infected Zebrafish. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	79
47	Exploiting the synthetic lethality between terminal respiratory oxidases to kill <i>Mycobacterium tuberculosis</i> and clear host infection. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7426-7431.	3.3	141
48	EthA/R-Independent Killing of Mycobacterium tuberculosis by Ethionamide. Frontiers in Microbiology, 2017, 8, 710.	1.5	23
49	A rheostat mechanism governs the bifurcation of carbon flux in mycobacteria. Nature Communications, 2016, 7, 12527.	5.8	27
50	Contribution of highâ€content imaging technologies to the development of antiâ€infective drugs. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 755-760.	1.1	15
51	Isolation and Characterization of a Hybrid Respiratory Supercomplex Consisting of Mycobacterium tuberculosis Cytochrome bcc and Mycobacterium smegmatis Cytochrome aa3. Journal of Biological Chemistry, 2015, 290, 14350-14360.	1.6	36
52	Next-generation antimicrobials: from chemical biology to first-in-class drugs. Archives of Pharmacal Research, 2015, 38, 1702-1717.	2.7	8
53	High-Content Screening Technology Combined with a Human Granuloma Model as a New Approach To Evaluate the Activities of Drugs against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 693-697.	1.4	33
54	An <i>ethA-ethR</i> -Deficient Mycobacterium bovis BCG Mutant Displays Increased Adherence to Mammalian Cells and Greater Persistence <i>In Vivo</i> , Which Correlate with Altered Mycolic Acid Composition. Infection and Immunity, 2014, 82, 1850-1859.	1.0	16

#	Article	IF	CITATIONS
55	Targeting Bacterial Central Metabolism for Drug Development. Chemistry and Biology, 2014, 21, 1423-1432.	6.2	153
56	Lead Optimization of a Novel Series of Imidazo[1,2- <i>a</i>]pyridine Amides Leading to a Clinical Candidate (Q203) as a Multi- and Extensively-Drug-Resistant Anti-tuberculosis Agent. Journal of Medicinal Chemistry, 2014, 57, 5293-5305.	2.9	153
57	Role of the CD137 ligand (CD137L) signaling pathway during Mycobacterium tuberculosis infection. Immunobiology, 2014, 219, 78-86.	0.8	4
58	Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nature Medicine, 2013, 19, 1157-1160.	15.2	509
59	Discovery of Tetrahydropyrazolopyrimidine Carboxamide Derivatives As Potent and Orally Active Antitubercular Agents. ACS Medicinal Chemistry Letters, 2013, 4, 451-455.	1.3	43
60	Indolcarboxamide Is a Preclinical Candidate for Treating Multidrug-Resistant Tuberculosis. Science Translational Medicine, 2013, 5, 214ra168.	5.8	134
61	para-Aminosalicylic Acid Is a Prodrug Targeting Dihydrofolate Reductase in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2013, 288, 23447-23456.	1.6	158
62	Characterization of Phosphofructokinase Activity in Mycobacterium tuberculosis Reveals That a Functional Glycolytic Carbon Flow Is Necessary to Limit the Accumulation of Toxic Metabolic Intermediates under Hypoxia. PLoS ONE, 2013, 8, e56037.	1.1	46
63	Urease Activity Represents an Alternative Pathway for Mycobacterium tuberculosis Nitrogen Metabolism. Infection and Immunity, 2012, 80, 2771-2779.	1.0	65
64	A High-Throughput Screen To Identify Inhibitors of ATP Homeostasis in Non-replicating <i>Mycobacterium tuberculosis</i> . ACS Chemical Biology, 2012, 7, 1190-1197.	1.6	123
65	The Natural Product Cyclomarin Kills Mycobacterium Tuberculosis by Targeting the ClpC1â€Subunit of the Caseinolytic Protease. Angewandte Chemie - International Edition, 2011, 50, 5889-5891.	7.2	149
66	Nitrate Respiration Protects Hypoxic Mycobacterium tuberculosis Against Acid- and Reactive Nitrogen Species Stresses. PLoS ONE, 2010, 5, e13356.	1.1	91
67	A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy. Nature Communications, 2010, 1, 57.	5.8	250
68	Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology (United Kingdom), 2010, 156, 81-87.	0.7	251
69	Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for <i>Mycobacterium tuberculosis</i> to establish and maintain infection. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9819-9824.	3.3	299
70	Triacylglycerol Utilization Is Required for Regrowth of In Vitro Hypoxic Nonreplicating <i>Mycobacterium bovis</i> Bacillus Calmette-Guerin. Journal of Bacteriology, 2009, 191, 5037-5043.	1.0	119
71	Recombinase-based reporter system and antisense technology to study gene expression and essentiality in hypoxic nonreplicating mycobacteria. FEMS Microbiology Letters, 2008, 284, 68-75.	0.7	10
72	The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11945-11950.	3.3	471

#	Article	IF	CITATIONS
73	Biosynthesis and Recycling of Nicotinamide Cofactors in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2008, 283, 19329-19341.	1.6	152
74	Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6031-6036.	3.3	305
75	Sensitive profiling of chemically diverse bioactive lipids. Journal of Lipid Research, 2007, 48, 1976-1984.	2.0	82
76	M. tuberculosis Rv2252 encodes a diacylglycerol kinase involved in the biosynthesis of phosphatidylinositol mannosides (PIMs). Molecular Microbiology, 2006, 60, 1152-1163.	1.2	17
77	Mycobacterium tuberculosis with Disruption in Genes Encoding the Phosphate Binding Proteins PstS1 and PstS2 Is Deficient in Phosphate Uptake and Demonstrates Reduced In Vivo Virulence. Infection and Immunity, 2005, 73, 1898-1902.	1.0	105
78	Methylation-dependent T cell immunity to Mycobacterium tuberculosis heparin-binding hemagglutinin. Nature Medicine, 2004, 10, 935-941.	15.2	131
79	Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13642-13647.	3.3	291
80	Eighty-Kilodalton N-Terminal Moiety of Bordetella pertussis Filamentous Hemagglutinin: Adherence, Immunogenicity, and Protective Role. Infection and Immunity, 2002, 70, 4142-4147.	1.0	29
81	Differential T and B Cell Responses againstMycobacterium tuberculosisHeparinâ€Binding Hemagglutinin Adhesin in Infected Healthy Individuals and Patients with Tuberculosis. Journal of Infectious Diseases, 2002, 185, 513-520.	1.9	109
82	Transient Requirement of the PrrA-PrrB Two-Component System for Early Intracellular Multiplication of Mycobacterium tuberculosis. Infection and Immunity, 2002, 70, 2256-2263.	1.0	87
83	Mycobacterial heparin-binding hemagglutinin and laminin-binding protein share antigenic methyllysines that confer resistance to proteolysis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10759-10764.	3.3	110
84	Enhanced bacterial virulence through exploitation of host glycosaminoglycans. Molecular Microbiology, 2002, 43, 1379-1386.	1.2	75
85	Interaction of human Tamm–Horsfall glycoprotein with Bordetella pertussis toxin. Microbiology (United Kingdom), 2002, 148, 1193-1201.	0.7	7
86	Mycobacterium smegmatis laminin-binding glycoprotein shares epitopes with Mycobacterium tuberculosis heparin-binding haemagglutinin. Molecular Microbiology, 2001, 39, 89-99.	1.2	56
87	The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature, 2001, 412, 190-194.	13.7	411
88	Role of ADP-Ribosyltransferase Activity of Pertussis Toxin in Toxin-Adhesin Redundancy with Filamentous Hemagglutinin during Bordetella pertussis Infection. Infection and Immunity, 2001, 69, 6038-6043.	1.0	48
89	Tuberculose, la porte vers la dissémination extra-pulmonaire. Medecine/Sciences, 2001, 17, 1220-1221.	0.0	0
90	Characterization of the Heparin-binding Site of the Mycobacterial Heparin-binding Hemagglutinin Adhesin. Journal of Biological Chemistry, 2000, 275, 14273-14280.	1.6	110

#	Article	IF	CITATIONS
91	Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions. , 0, , 295-316.		4