Yusuf Z Menceloglu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7322575/publications.pdf

Version: 2024-02-01

137 5,115 papers citations

36 67 h-index g-index

142 142 all docs citations

142 times ranked 5976 citing authors

#	Article	IF	CITATIONS
1	Dispersion Polymerizations in Supercritical Carbon Dioxide. Science, 1994, 265, 356-359.	6.0	639
2	Tunable, Superhydrophobically Stable Polymeric Surfaces by Electrospinning. Angewandte Chemie - International Edition, 2004, 43, 5210-5213.	7.2	302
3	Palladium Nanoparticles by Electrospinning from Poly(acrylonitrile-co-acrylic acid)â^'PdCl2 Solutions. Relations between Preparation Conditions, Particle Size, and Catalytic Activity. Macromolecules, 2004, 37, 1787-1792.	2.2	279
4	Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: An investigation by response surface methodology. Materials & Design, 2008, 29, 34-44.	5.1	274
5	In vitro and in vivo degradation of non-woven materials made of poly(Îμ-caprolactone) nanofibers prepared by electrospinning under different conditions. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 1537-1555.	1.9	265
6	In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 81B, 530-543.	1.6	216
7	Homogeneous free radical polymerizations in supercritical carbon dioxide: 2. Thermal decomposition of 2,2'-azobis(isobutyronitrile). Macromolecules, 1993, 26, 2663-2669.	2.2	166
8	Flagellenes: nanophase-separated, polymer-substituted fullerenes. Chemistry of Materials, 1992, 4, 1153-1157.	3.2	142
9	Halloysite Nanotubes/Polyethylene Nanocomposites for Active Food Packaging Materials with Ethylene Scavenging and Gas Barrier Properties. Food and Bioprocess Technology, 2017, 10, 789-798.	2.6	93
10	Antibacterial sustained-release coatings from halloysite nanotubes/waterborne polyurethanes. Progress in Organic Coatings, 2016, 101, 253-261.	1.9	82
11	The novel use of organo alkoxy silane for the synthesis of organic–inorganic hybrid coatings. Journal of Non-Crystalline Solids, 2006, 352, 2143-2151.	1.5	77
12	Interfacially polymerized thin-film composite membranes: Impact of support layer pore size on active layer polymerization and seawater desalination performance. Separation and Purification Technology, 2019, 212, 438-448.	3.9	73
13	Synthesis and Characterization of Polymeric Linseed Oil Grafted Methyl Methacrylate or Styrene. Macromolecular Bioscience, 2004, 4, 649-655.	2.1	66
14	Engineering Chemistry of Electrospun Nanofibers and Interfaces in Nanocomposites for Superior Mechanical Properties. ACS Applied Materials & Samp; Interfaces, 2010, 2, 1788-1793.	4.0	66
15	Modified poly(carboxylate ether)-based superplasticizer for enhanced flowability of calcined clay-limestone-gypsum blended Portland cement. Cement and Concrete Research, 2017, 101, 114-122.	4.6	62
16	Nano-engineered design and manufacturing of high-performance epoxy matrix composites with carbon fiber/selectively integrated graphene as multi-scale reinforcements. RSC Advances, 2016, 6, 9495-9506.	1.7	61
17	Time-of-flight secondary ion mass spectrometric analysis of polymer surfaces and additives. Surface and Interface Analysis, 1993, 20, 991-999.	0.8	58
18	Effects of solvent on TEOS hydrolysis kinetics and silica particle size under basic conditions. Journal of Sol-Gel Science and Technology, 2013, 67, 351-361.	1.1	58

#	Article	IF	Citations
19	Multifunctional 3D printing of heterogeneous hydrogel structures. Scientific Reports, 2016, 6, 33178.	1.6	58
20	Fabrication and characterization of temperature and pH resistant thin film nanocomposite membranes embedded with halloysite nanotubes for dye rejection. Desalination, 2018, 429, 20-32.	4.0	57
21	Carvacrol loaded halloysite coatings for antimicrobial food packaging applications. Food Packaging and Shelf Life, 2019, 20, 100300.	3.3	54
22	Polyurethaneurea–silica nanocomposites: Preparation and investigation of the structure–property behavior. Polymer, 2013, 54, 5310-5320.	1.8	53
23	Repeated self-healing of nano and micro scale cracks in epoxy based composites by tri-axial electrospun fibers including different healing agents. RSC Advances, 2015, 5, 73133-73145.	1.7	52
24	Fumed silica filled poly(dimethylsiloxane-urea) segmented copolymers: Preparation and properties. Polymer, 2011, 52, 4189-4198.	1.8	51
25	MWCNTs/P(St- <i>co</i> GMA) Composite Nanofibers of Engineered Interface Chemistry for Epoxy Matrix Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2012, 4, 777-784.	4.0	50
26	Modeling 3D melt electrospinning writing by response surface methodology. Materials and Design, 2018, 148, 87-95.	3.3	49
27	Structural composites hybridized with epoxy compatible polymer/MWCNT nanofibrous interlayers. Composites Science and Technology, 2012, 72, 1639-1645.	3.8	46
28	Processing and properties of boron carbide (B4C) reinforced LDPE composites for radiation shielding. Ceramics International, 2020, 46, 343-352.	2.3	46
29	Monitoring the interface and bulk self-healing capability of tri-axial electrospun fibers in glass fiber reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 2017, 99, 221-232.	3.8	44
30	Tailoring viscoelastic response, self-heating and deicing properties of carbon-fiber reinforced epoxy composites by graphene modification. Composites Part A: Applied Science and Manufacturing, 2018, 106, 1-10.	3.8	44
31	Effect of filler amount on thermoelastic properties of poly(dimethylsiloxane) networks. Polymer, 2005, 46, 4127-4134.	1.8	43
32	Improvement in gas permeability of biaxially stretched PET films blended with high barrier polymers: The role of chemistry and processing conditions. European Polymer Journal, 2010, 46, 226-237.	2.6	43
33	Synthesis and SANS Structural Characterization of Polymer-Substituted Fullerenes (Flagellenes). Macromolecules, 1995, 28, 6000-6006.	2.2	42
34	Nonisocyanate based polyurethane/silica nanocomposites and their coating performance. Journal of Sol-Gel Science and Technology, 2008, 47, 290-299.	1.1	41
35	Global and local nanofibrous interlayer toughened composites for higher in-plane strength. Composites Part A: Applied Science and Manufacturing, 2014, 58, 73-76.	3.8	39
36	Production of PEG grafted PAN copolymers and their electrospun nanowebs as novel thermal energy storage materials. Thermochimica Acta, 2016, 643, 83-93.	1.2	38

#	Article	IF	CITATIONS
37	Nanosilicate embedded agarose hydrogels with improved bioactivity. Carbohydrate Polymers, 2018, 201, 105-112.	5.1	38
38	Preparation and characterization of phosphine oxide based polyurethane/silica nanocomposite via non-isocyanate route. Progress in Organic Coatings, 2010, 69, 366-375.	1.9	37
39	Single Additive Enables 3D Printing of Highly Loaded Iron Oxide Suspensions. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9873-9881.	4.0	35
40	Synthesis, characterization and surface properties of amphiphilic polystyrene-b-polypropylene glycol block copolymers. European Polymer Journal, 2006, 42, 740-750.	2.6	33
41	A Sustainable Approach to Produce Stiff, Super-Tough, and Heat-Resistant Poly(lactic acid)-Based Green Materials. ACS Sustainable Chemistry and Engineering, 2019, 7, 7869-7877.	3.2	33
42	Poly(carboxylate ether)-based superplasticizer achieves workability retention in calcium aluminate cement. Scientific Reports, 2017, 7, 41743.	1.6	32
43	Synthesis and characterization of flame retarding UV-curable organic–inorganic hybrid coatings. Journal of Applied Polymer Science, 2006, 102, 1906-1914.	1.3	29
44	Design and fabrication of multi-walled hollow nanofibers by triaxial electrospinning as reinforcing agents in nanocomposites. Journal of Reinforced Plastics and Composites, 2015, 34, 1273-1286.	1.6	28
45	Dynamic glass transition of the rigid amorphous fraction in polyurethane-urea/SiO ₂ nanocomposites. Soft Matter, 2017, 13, 4580-4590.	1.2	28
46	Facile Synthesis of Graphene from Waste Tire/Silica Hybrid Additives and Optimization Study for the Fabrication of Thermally Enhanced Cement Grouts. Molecules, 2020, 25, 886.	1.7	28
47	Glycidylâ€Methacrylateâ€Based Electrospun Mats and Catalytic Silver Nanoparticles. Macromolecular Chemistry and Physics, 2008, 209, 508-515.	1.1	27
48	Rational design and direct fabrication of multi-walled hollow electrospun fibers with controllable structure and surface properties. European Polymer Journal, 2015, 62, 66-76.	2.6	27
49	Manufacturing of multilayer graphene oxide/poly(ethylene terephthalate) nanocomposites with tunable crystallinity, chain orientations and thermal transitions. Materials Chemistry and Physics, 2016, 176, 58-67.	2.0	27
50	Thin-film composite nanofiltration membranes with high flux and dye rejection fabricated from disulfonated diamine monomer. Journal of Membrane Science, 2020, 608, 118172.	4.1	27
51	Mechanical reinforcement and memory effect of strain-induced soft segment crystals in thermoplastic polyurethane-urea elastomers. Polymer, 2021, 223, 123708.	1.8	26
52	Design and fabrication of hollow and filled graphene-based polymeric spheres ⟨i⟩via⟨ i⟩ core–shell electrospraying. RSC Advances, 2015, 5, 91147-91157.	1.7	25
53	<i>In vitro/in vivo</i> evaluation of gamma-aminobutyric acid-loaded <i>N</i> , <i>N</i> ,dimethylacrylamide-based pegylated polymeric nanoparticles for brain delivery to treat epilepsy. Journal of Microencapsulation, 2016, 33, 625-635.	1.2	25
54	Transparent lowâ€density polyethylene/starch nanocomposite films. Journal of Applied Polymer Science, 2013, 129, 1907-1914.	1.3	24

#	Article	IF	CITATIONS
55	Use of polyethylene glycol coatings for optical fibre humidity sensing. Optical Review, 2008, 15, 84-90.	1.2	23
56	ATRP of methyl methacrylate initiated with a bifunctional initiator bearing bromomethyl functional groups: Synthesis of the block and graft copolymers. Journal of Polymer Science Part A, 2010, 48, 1364-1373.	2.5	23
57	Evaluation of biofouling behavior of zwitterionic silane coated reverse osmosis membranes fouled by marine bacteria. Progress in Organic Coatings, 2019, 134, 303-311.	1.9	23
58	Fabrication and optimization of proton conductive polybenzimidazole electrospun nanofiber membranes. Polymers for Advanced Technologies, 2018, 29, 594-602.	1.6	22
59	Acrytonitrile block copolymers. Polymer Bulletin, 1989, 21, 259-263.	1.7	20
60	High-Performance Green Composites of Poly(lactic acid) and Waste Cellulose Fibers Prepared by High-Shear Thermokinetic Mixing. Industrial & Engineering Chemistry Research, 2017, 56, 8568-8579.	1.8	19
61	Synthesis and Morphological Control of VO2 Nanostructures via a One-Step Hydrothermal Method. Nanomaterials, 2021, 11, 752.	1.9	19
62	UV curable sulfonated hybrid materials and their performance as proton exchange membranes. Reactive and Functional Polymers, 2009, 69, 698-704.	2.0	18
63	An Experimental Study on the Process Monitoring of Resin Transfer Molded Composite Structures Using Fiber Optic Sensors. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2012, 134, .	1.3	18
64	Development of waste tireâ€derived graphene reinforced polypropylene nanocomposites with controlled polymer grade, crystallization and mechanical characteristics via meltâ€mixing. Polymer International, 2020, 69, 771-779.	1.6	18
65	Morphology-controllable synthesis and characterization of carbon nanotube/polypyrrole composites and their hydrogen storage capacities. Materials Chemistry and Physics, 2015, 167, 171-180.	2.0	17
66	Insecticide-releasing LLDPE films as greenhouse cover materials. Materials Today Communications, 2019, 19, 170-176.	0.9	17
67	Dual Scale Roughness Driven Perfectly Hydrophobic Surfaces Prepared by Electrospraying a Polymer in Good Solvent–Poor Solvent Systems. Langmuir, 2012, 28, 14192-14201.	1.6	16
68	Nonisocyanate polyurethane/silica hybrid coatings via a sol–gel route. Advances in Polymer Technology, 2012, 31, 390-400.	0.8	15
69	Effect of soft segment molecular weight on the glass transition, crystallinity, molecular mobility and segmental dynamics of poly(ethylene oxide) based poly(urethane–urea) copolymers. RSC Advances, 2017, 7, 40745-40754.	1.7	15
70	Effect of filler content on the structureâ€property behavior of poly(ethylene oxide) based polyurethaneureaâ€silica nanocomposites. Polymer Engineering and Science, 2018, 58, 1097-1107.	1.5	15
71	Rapid Microwave-Assisted Synthesis of Platinum Nanoparticles Immobilized in Electrospun Carbon Nanofibers for Electrochemical Catalysis. ACS Applied Nano Materials, 2018, 1, 6236-6246.	2.4	15
72	Facile Synthesis of Single―and Multi‣ayer Graphene/Mn 3 O 4 Integrated 3D Urchinâ€Shaped Hybrid Composite Electrodes by Coreâ€Shell Electrospinning. ChemNanoMat, 2019, 5, 792-801.	1.5	15

#	Article	IF	CITATIONS
73	Tuning Interaction Parameters of Thermoplastic Polyurethanes in a Binary Solvent To Achieve Precise Control over Microphase Separation. Journal of Chemical Information and Modeling, 2019, 59, 1946-1956.	2.5	15
74	Ring-Opening polymerization of propyleneimine with N-benzyl phthalimide derivatives. Journal of Polymer Science Part A, 1992, 30, 501-504.	2.5	14
75	Comparison of melt extrusion and thermokinetic mixing methods in poly(ethylene) Tj ETQq1 1 0.784314 rgBT /C	verlock 10 1.5) Tf 50 662 14
76	Molecular basis for solvent dependent morphologies observed on electrosprayed surfaces. Physical Chemistry Chemical Physics, 2013, 15, 17862.	1.3	14
77	Aggregation of Fillers Blended into Random Elastomeric Networks: Theory and Comparison with Experiments. Macromolecular Chemistry and Physics, 2006, 207, 1515-1524.	1.1	13
78	Graphene based nanosensor for aqueous phase detection of nitroaromatics. RSC Advances, 2017, 7, 25519-25527.	1.7	13
79	Poly(lactide)/cellulose nanocrystal nanocomposites by highâ€shear mixing. Polymer Engineering and Science, 2021, 61, 1028-1040.	1.5	13
80	Phosphorusâ€Containing Sulfonated Polyimides for Proton Exchange Membranes. Macromolecular Chemistry and Physics, 2008, 209, 919-929.	1.1	12
81	Shear and extensional rheological characterization of poly(acrylonitrile)/halloysite nanocomposite solutions. European Polymer Journal, 2015, 73, 17-25.	2.6	12
82	Soft segment length controls morphology of poly(ethylene oxide) based segmented poly(urethane-urea) copolymers in a binary solvent. Computational Materials Science, 2017, 138, 58-69.	1.4	12
83	Graphene from waste tire by recycling technique for cost-effective and light-weight automotive plastic part production. AIP Conference Proceedings, 2020, , .	0.3	12
84	Long time stress relaxation of amorphous networks under uniaxial tension:ÂThe Dynamic Constrained Junction Model. Polymer, 2008, 49, 1056-1065.	1.8	11
85	Design of Pt-Supported 1D and 3D Multilayer Graphene-Based Structural Composite Electrodes with Controlled Morphology by Core–Shell Electrospinning/Electrospraying. ACS Omega, 2018, 3, 6400-6410.	1.6	11
86	Comparison of the Effectiveness of Chlorine, Ozone, and Photocatalytic Disinfection in Reducing the Risk of Antibiotic Resistance Pollution. Journal of Advanced Oxidation Technologies, 2011, 14, .	0.5	10
87	Halloysite nanotube blended nanocomposite ultrafiltration membranes for reactive dye removal. Water Science and Technology, 2021, 83, 271-283.	1.2	10
88	New surfactants design for CO2 applications: Molecular dynamics simulations of fluorocarbon–hydrocarbon oligomers. Journal of Chemical Physics, 2003, 119, 4953-4961.	1.2	9
89	Synthesis of a side chain liquid crystalline polycarbonate with a chiral backbone. Journal of Applied Polymer Science, 2006, 102, 1915-1921.	1.3	9
90	Experimental study on the rheology of anisotropic, flocculated and low volume fraction colloids. Korea Australia Rheology Journal, 2014, 26, 105-116.	0.7	9

#	Article	IF	Citations
91	Rheological behavior of poly(acrylonitrile) concentrated solutions: effect of Sb2O3 nanoparticles on shear and extensional flow. Colloid and Polymer Science, 2016, 294, 1463-1473.	1.0	9
92	Polymer Nanocomposites With Decorated Metal Oxides., 2019,, 287-323.		9
93	An experimental study on the heat transfer and wettability characteristics of micro-structured surfaces during water vapor condensation under different pressure conditions. International Communications in Heat and Mass Transfer, 2021, 120, 105063.	2.9	9
94	Barrier Properties of Polypropylene/Poly(M-Xylene Adipamide) and Polypropylene/ Poly(Ethylene-Co-Vinyl Alcohol) Blend Films. Journal of Plastic Film and Sheeting, 2010, 26, 377-394.	1.3	8
95	Extensional rheology and stability behavior of alumina suspensions in the presence of AMPS-modified polycarboxylate ether-based copolymers. Colloid and Polymer Science, 2015, 293, 2867-2876.	1.0	8
96	Thermally exfoliated graphene oxide reinforced fluorinated pentablock poly(<scp> < scp> a€iactideaexi>co< i>a€iµa€eaprolactone) electrospun scaffolds: Insight into antimicrobial activity and biodegradation. Journal of Applied Polymer Science, 2016, 133, .</scp>	1.3	8
97	Manufacturing functionalized mono-crystalline diamond containing electrospun fibers reinforced epoxy composites with improved mechanical characteristics. Diamond and Related Materials, 2017, 76, 90-96.	1.8	8
98	Blends of highly branched and linear poly(arylene ether sulfone)s: Multiscale effect of the degree of branching on the morphology and mechanical properties. Polymer, 2020, 188, 122114.	1.8	8
99	Synergistic Effect of Expanded Graphite-Silane Functionalized Silica as a Hybrid Additive in Improving the Thermal Conductivity of Cementitious Grouts with Controllable Water Uptake. Energies, 2020, 13, 3561.	1.6	8
100	Synthesis of fluorinated oligomers for supercritical carbon dioxide applications. Journal of Polymer Science Part A, 2005, 43, 5312-5322.	2.5	7
101	Nanoâ€engineering of highâ€performance PA6.6 nanocomposites by the integration of CVDâ€grown carbon fiber on graphene as a bicomponent reinforcement by meltâ€compounding. Journal of Applied Polymer Science, 2019, 136, 48347.	1.3	7
102	Effect of surface modification of colloidal silica nanoparticles on the rigid amorphous fraction and mechanical properties of amorphous polyurethane–urea–silica nanocomposites. Journal of Polymer Science Part A, 2019, 57, 2543-2556.	2.5	7
103	Surface Modification of Reverse Osmosis Desalination Membranes with Zwitterionic Silane Compounds for Enhanced Organic Fouling Resistance. Industrial & Engineering Chemistry Research, 2021, 60, 5133-5144.	1.8	7
104	Fabrication of halloysite nanotubes embedded thin film nanocomposite membranes for dye removal. Journal of Applied Polymer Science, 2021, 138, 50986.	1.3	7
105	Effect of Polymer Coating on Vapor Condensation Heat Transfer. Journal of Heat Transfer, 2020, 142, .	1.2	7
106	Poly(propylene)/waste vulcanized ethylene- propylene-diene monomer (PP/WEPDM) blends prepared by high-shear thermo-kinetic mixer. Journal of Elastomers and Plastics, 2018, 50, 537-553.	0.7	6
107	Fabrication of high-performance nanofiber-based FO membranes. , 0, 147, 56-72.		6
108	Triblock Superabsorbent Polymer Nanocomposites with Enhanced Water Retention Capacities and Rheological Characteristics. ACS Omega, 2022, 7, 20486-20494.	1.6	6

#	Article	lF	Citations
109	Poly(vinylidene fluoride)/zinc oxide smart composite material., 2007,,.		5
110	Effect of Organoclay on the Physical Properties of UV-Curable Coatings. ACS Symposium Series, 2009, , 255-273.	0.5	5
111	Geometric Confinement Controls Stiffness, Strength, Extensibility, and Toughness in Poly(urethane–urea) Copolymers. Macromolecules, 2021, 54, 4704-4725.	2.2	5
112	Investigation of structure-morphology-function relationship of plastomers used to produce low mold shrinkage thermoplastic olefins. European Polymer Journal, 2021, 159, 110758.	2.6	5
113	Title is missing!. Angewandte Makromolekulare Chemie, 1992, 200, 37-47.	0.3	4
114	Branched Pentablock Poly(L-lactide-co-â^Š-caprolactone) Synthesis in scCO2. High Performance Polymers, 2007, 19, 649-664.	0.8	4
115	Morphological similarity of a tri-block copolymer processed at ambient and elevated temperatures. Korea Australia Rheology Journal, 2012, 24, 313-321.	0.7	4
116	Fabrication and Morphological Investigation of Multi-walled Electrospun Polymeric Nanofibers. Materials Research Society Symposia Proceedings, 2014, 1621, 119-126.	0.1	4
117	A PCE-based rheology modifier allows machining of solid cast green bodies of alumina. Ceramics International, 2016, 42, 3757-3761.	2.3	4
118	Stiff, Strong, Tough, and Highly Stretchable Hydrogels Based on Dual Stimuli-Responsive Semicrystalline Poly(urethane–urea) Copolymers. ACS Applied Polymer Materials, 2021, 3, 5683-5695.	2.0	4
119	The effect of IPMC parameters in electromechanical coefficient based on equivalent beam theory. , 2008, , .		3
120	Morphology of poly(ethylene terephthalate) blends: An analysis under real processing conditions by rheology and microscopy. Advances in Polymer Technology, 2009, 28, 173-184.	0.8	3
121	Designed-in Molecular Interactions Lead to Superior Thermo-mechanical Properties in Nanocomposites. Materials Research Society Symposia Proceedings, 2011, 1304, 1.	0.1	3
122	Silanization of SiO2 Decorated Carbon Nanosheets from Rice Husk Ash and Its Effect on Workability and Hydration of Cement Grouts. Nanomaterials, 2021, 11, 655.	1.9	3
123	Long time stress relaxation of filled amorphous networks under uniaxial tension: dynamic constrained junction model. Plastics, Rubber and Composites, 2009, 38, 327-332.	0.9	2
124	Alternative Pathogen Control Chemistry of Glass Fiber-Reinforced Polyester Panels for Cooling Towers. Journal of Materials Engineering and Performance, 2019, 28, 6011-6024.	1.2	2
125	Specific Interactions and Self-Organization in Polymer/Functionalized Nanoparticle Systems. , 2019, , 85-117.		2
126	Polymer Composites Containing Functionalized Nanoparticles and the Environment., 2019,, 437-466.		2

#	Article	IF	CITATIONS
127	Fabrication Methodologies of Multi-layered and Multi-functional Electrospun Structures by Co-axial and Multi-axial Electrospinning Techniques. , 2022, , 35-66.		2
128	Polyurethane Nanofiber Webs for Sensor and Actuator Applications in Microelectromechanical Systems (MEMS). Materials Research Society Symposia Proceedings, 2003, 782, 1.	0.1	1
129	Lyophilization-Induced Structural Changes in Solvent-Swollen and Supercritical Carbon Dioxide Treated Low-Rank Turkish Coals and Characterization of Their Extracts. Energy &	2.5	1
130	Semiâ€intrinsic selfâ€healing performance of liquidâ€cored microcapsules in epoxy matrix. Advances in Polymer Technology, 2018, 37, 1435-1443.	0.8	1
131	Low density, high modulus polypropylene wood composites prepared by using thermo kinetic mixer. AIP Conference Proceedings, 2020, , .	0.3	1
132	New hybrid nano additives for thermoplastic compounding: CVD grown carbon fiber on graphene. AIP Conference Proceedings, 2020, , .	0.3	1
133	Effect of nanomaterials/nanofibers on the structure and properties of fiber-reinforced composites., 2020, , 157-182.		1
134	Investigation of pilot scale manufacturing of polysulfone (Psf) membranes by wet phase inversion method., 0, 131, 66-74.		1
135	Advanced Polymer Particles. International Journal of Polymer Science, 2012, 2012, 1-2.	1.2	0
136	Study of Local and Transient Buckling in Glass Fiber Reinforced Composite Using Fiber Bragg Grating. Key Engineering Materials, 0, 543, 346-351.	0.4	0
137	Nanomaterials recycling in industrial applications. , 2022, , 375-395.		0