
Chih-Chiang Weng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7322237/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment and characterization of degradation effect for the varied degrees of ultra-violet radiation onto the collagen-bonded polypropylene non-woven fabric surfaces. Biomaterials, 2002, 23, 65-76.	5.7	62
2	Modification of Aliphatic Monomolecular Films by Free Radical Dominant Plasma:  The Effect of the Alkyl Chain Length and the Substrate. Langmuir, 2003, 19, 9774-9780.	1.6	41
3	Submerged Liquid Plasma for the Synthesis of Unconventional Nitrogen Polymers. Scientific Reports, 2013, 3, 2414.	1.6	37
4	Modification of Alkanethiolate Self-Assembled Monolayers by Free Radical-Dominant Plasma. Journal of Physical Chemistry B, 2002, 106, 77-84.	1.2	31
5	The Effect of the Substrate on Response of Thioaromatic Self-Assembled Monolayers to Free Radical-Dominant Plasma. Journal of Physical Chemistry B, 2002, 106, 6220-6226.	1.2	30
6	Modification of Aliphatic Self-Assembled Monolayers by Free-Radical-Dominant Plasma:Â The Role of the Plasma Composition. Langmuir, 2004, 20, 10093-10099.	1.6	29
7	Fabrication of nano-indented cavities on Au for the detection of chemically-adsorbed DTNB molecular probes through SERS effect. Journal of Colloid and Interface Science, 2011, 358, 384-391.	5.0	29
8	Rapid Prototyping of an Open-Surface Microfluidic Platform Using Wettability-Patterned Surfaces Prepared by an Atmospheric-Pressure Plasma Jet. ACS Omega, 2019, 4, 16292-16299.	1.6	19
9	Inactivation of bacteria by a mixed argon and oxygen micro-plasma as a function of exposure time. International Journal of Radiation Biology, 2009, 85, 362-368.	1.0	17
10	Trajectory effect on the properties of large area ZnO thin films deposited by atmospheric pressure plasma jet. Applied Surface Science, 2014, 314, 1074-1081.	3.1	16
11	Modification of Monomolecular Self-Assembled Films by Nitrogenâ^'Oxygen Plasma. Journal of Physical Chemistry B, 2006, 110, 12523-12529.	1.2	13
12	Hydrophilic Treatment of the Dyed Nylon-6 Fabric using High-density and Extensible Antenna-coupling Microwave Plasma System. Plasma Chemistry and Plasma Processing, 2005, 25, 255-273.	1.1	12
13	Detecting very small quantity of molecular probes in solution using nano-mechanically made Au-cavities array with SERS-active effect. Sensors and Actuators B: Chemical, 2011, 153, 271-276.	4.0	11
14	Conversion of emitted dimethyl sulfide into eco-friendly species using low-temperature atmospheric argon micro-plasma system. Journal of Hazardous Materials, 2012, 201-202, 185-192.	6.5	10
15	Capillary-tube-based oxygen/argon micro-plasma system for the inactivation of bacteria suspended in aqueous solution. International Journal of Radiation Biology, 2011, 87, 936-943.	1.0	9
16	Capillary-tube-based micro-plasma system for disinfecting dental biofilm. International Journal of Radiation Biology, 2013, 89, 364-370.	1.0	8
17	Microcontact printing pattern as a mask for chemical etching: A scanning photoelectron microscopy study. Journal of Vacuum Science & Technology B, 2007, 25, 1729.	1.3	7
18	Alkanethiolate Self-Assembled Monolayers As a Negative or Positive Resist for Electron Lithography. Journal of Physical Chemistry C. 2009, 113, 4543-4548.	1.5	7

#	Article	IF	CITATIONS
19	Fabrication of magnetic liquid marbles using superhydrophobic atmospheric pressure plasma jet-formed fluorinated silica nanocomposites. Journal of Materials Science, 2019, 54, 10179-10190.	1.7	7
20	Rapid Microâ€Scale Patterning of Alkanethiolate Selfâ€Assembled Monolayers on Au Surface by Atmospheric Microâ€Plasma Stamp. Plasma Processes and Polymers, 2013, 10, 345-352.	1.6	4
21	Patterning of alkanethiolate self-assembled monolayers by downstream microwave nitrogen plasma: Negative and positive resist behavior. Journal of Vacuum Science & Technology B, 2009, 27, 1949.	1.3	3
22	The influence of methane/argon plasma composition on the formation of the hydrogenated amorphous carbon films. Thin Solid Films, 2011, 519, 2049-2053.	0.8	2