List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7320816/publications.pdf Version: 2024-02-01

KEIKO LIDO

#	Article	IF	CITATIONS
1	Coastal adaptation to Sea Level Rise: An overview of Egypt's efforts. Ocean and Coastal Management, 2022, 218, 106024.	2.0	7
2	Climate change driven shoreline change at Hasaki Beach Japan: A novel application of the Probabilistic Coastline Recession (PCR) model. Coastal Engineering, 2022, 172, 104079.	1.7	9
3	Comparing future climatic suitability to shoreline loss for recreational beach use: a case study of five Japanese beaches. Regional Environmental Change, 2022, 22, 54.	1.4	1
4	An estimate of the value of the beachfront with respect to the hotel room rates in Thailand. Ocean and Coastal Management, 2022, 226, 106272.	2.0	4
5	Ten years after the 2011 Tohoku-oki earthquake and tsunami: Geological and environmental effects and implications for disaster policy changes. Earth-Science Reviews, 2021, 212, 103417.	4.0	27
6	A review of climate-change impact and adaptation studies for the water sector in Thailand. Environmental Research Letters, 2021, 16, 023004.	2.2	36
7	The Comparative Study of Adaptation Measure to Sea Level Rise in Thailand. Journal of Marine Science and Engineering, 2021, 9, 588.	1.2	8
8	Morphodynamics and Evolution of Estuarine Sandspits along the Bight of Benin Coast, West Africa. Water (Switzerland), 2021, 13, 2977.	1.2	9
9	CROSS-SHORE MODEL APPLICATION TO HASAKI BEACH, JAPAN. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2021, 77, I_613-I_618.	0.0	0
10	Projections of future beach loss along the mediterranean coastline of Egypt due to sea-level rise. Applied Ocean Research, 2020, 94, 101972.	1.8	9
11	Beach Nourishment as an Adaptation to Future Sandy Beach Loss Owing to Sea-Level Rise in Thailand. Journal of Marine Science and Engineering, 2020, 8, 659.	1.2	7
12	Impact of SLR on Beach-Tourism Resort Revenue at Sahl Hasheesh and Makadi Bay, Red Sea, Egypt; A Hedonic Pricing Approach. Journal of Marine Science and Engineering, 2020, 8, 432.	1.2	5
13	An assessment of measured and computed depth of closure around Japan. Scientific Reports, 2020, 10, 2987.	1.6	15
14	Projections of Proper Beach Nourishment Volume as an Adaptation to Beach Recession based SLR along the Nile Delta Coastline of Egypt. Journal of Coastal Research, 2020, 95, 637.	0.1	2
15	Impact of Sea Level Rise on Tourism Carrying Capacity in Thailand. Journal of Marine Science and Engineering, 2020, 8, 104.	1.2	12
16	Effect of Spatial Resolution on Nationwide Projection of Future Beach Loss Rate in Japan. Journal of Coastal Research, 2020, 95, 1310.	0.1	2
17	Cost-Benefit Analysis of Adaptation to Beach Loss Due to Climate Change in Japan. Journal of Marine Science and Engineering, 2020, 8, 715.	1.2	5
18	Effect of Climate Change on Beaches in Japan. Japanese Journal of Multiphase Flow, 2019, 33, 28-35.	0.1	2

#	Article	IF	CITATIONS
19	Analysis of exposure to vector-borne diseases due to flood duration, for a more complete flood hazard assessment: Llanos de Moxos, Bolivia. Ribagua, 2018, 5, 48-62.	0.3	4
20	Detection of Coastal Damage using Differences in Automatically Generated Digital Surface Models (DSMs): Application to the 2011 Off the Pacific Coast of Tohoku Earthquake Tsunami. Journal of Coastal Research, 2018, 85, 696-700.	0.1	2
21	Analysis of Beach Recovery After the 2011 Tohoku Earthquake Tsunami Based on Shoreline Extraction by ISODATA. Journal of Coastal Research, 2018, 85, 171-175.	0.1	0
22	Assessing Future Coastline Change in the Vicinity of Tidal Inlets via Reduced Complexity Modelling. Journal of Coastal Research, 2018, 85, 636-640.	0.1	10
23	Projections of Future Beach Loss due to Sea Level Rise for Sandy Beaches along Thailand's Coastlines. Journal of Coastal Research, 2018, 85, 541-545.	0.1	17
24	The Yamamoto Coast Over Five Years; The Reconstruction of an Embankment with Tsunami-Induced Embayment. Advances in Natural and Technological Hazards Research, 2018, , 387-403.	1.1	1
25	Projections of Future Beach Loss in Japan Due to Sea-Level Rise and Uncertainties in Projected Beach Loss. Coastal Engineering Journal, 2017, 59, 1740006-1-1740006-16.	0.7	33
26	Future projection of flood inundation considering land-use changes and land subsidence in Jakarta, Indonesia. Hydrological Research Letters, 2017, 11, 99-105.	0.3	37
27	Online Information as Real-Time Big Data About Heavy Rain Disasters and its Limitations: Case Study of Miyagi Prefecture, Japan, During Typhoons 17 and 18 in 2015. Journal of Disaster Research, 2017, 12, 335-346.	0.4	6
28	Wind Turbulence Effects on Dune Sand Transport. Journal of Coastal Research, 2016, 75, 333-337.	0.1	2
29	Coastal Morphology Change Before and After 2011 Off the Pacific Coast of Tohoku Earthquake Tsunami at Rikuzen-Takata Coast. Coastal Engineering Journal, 2016, 58, 1640016-1-1640016-16.	0.7	17
30	Analysis of Coastal Erosion due to the 2011 Great East Japan Tsunami and its Recovery Using Ground Penetrating Radar Data. Journal of Coastal Research, 2016, 75, 477-481.	0.1	2
31	Connectivity Between Sediment Storage in Dam Reservoir and Coastal Erosion: Implications Through Zonal Mappings of Monitoring Data. Journal of Coastal Research, 2016, 75, 725-729.	0.1	2
32	Overview of Super Typhoon Haiyan and Characteristics of Human Damage due to its Storm Surge in the Coastal Region, Philippines. Journal of Coastal Research, 2016, 75, 1152-1156.	0.1	3
33	Characteristics of Shoreline Retreat Due to the 2011 Tohoku Earthquake and Tsunami and Its Recovery After Three Years. Coastal Research Library, 2016, , 113-123.	0.2	4
34	Mobilization of High Arsenic in the Shallow Groundwater of Kalaroa, South-Western Bangladesh. Exposure and Health, 2016, 8, 159-175.	2.8	7
35	Prediction of the 2011 Tohoku Tsunami Scouring near Structures. Journal of Coastal Research, 2016, 75, 872-876.	0.1	0
36	EFFECT OF LAND SUBSIDENCE ON FLOOD INUNDATION IN JAKARTA, INDONESIA. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2016, 72, I_283-I_289.	0.1	7

#	Article	IF	CITATIONS
37	EVALUATION OF FLOOD INUNDATION IN JAKARTA USING FLOOD INUNDATION MODEL CALIBRATED BY RADAR RAINFALL. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2016, 72, I_1243-I_1248.	0.0	11
38	RELATIONSHIP BETWEEN POTENTIAL SEDIMENT SUPPLY FROM RIVER TO SEA AND BEACH EROSION IN JAPAN. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2016, 72, I_799-I_804.	0.0	8
39	Characteristics of Beach Erosion due to the 2011 Tohoku Earthquake and Tsunami and Its Recovery across the Entire Inundated Area. Journal of Coastal Research, 2016, 75, 1252-1256.	0.1	5
40	Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. Ribagua, 2016, 3, 25-33.	0.3	151
41	CHARACTERISTICS OF WIND AND AEOLIAN SAND FLUX OVER A COASTAL DUNE. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2015, 71, I_529-I_534.	0.0	0
42	SCOURING MECHANISM AROUND STRUCTURE BY RETURN FLOW OF TSUNAMI CONSIDERING LIQUEFACTION. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2015, 71, I_241-I_246.	0.0	1
43	Future fluvial flood risks in <scp>C</scp> entral <scp>V</scp> ietnam assessed using global superâ€highâ€resolution climate model output. Journal of Flood Risk Management, 2015, 8, 276-288.	1.6	10
44	SCOURING FACTOR AROUND BREACHED COASTAL LEVEES BROKEN BY 2011 TOHOKU EARTHQUAKE TSUNAMI. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2014, 70, I_1153-I_1158.	0.0	0
45	Morphological Changes Along the Ishinomaki Coast Induced by the 2011 Great East Japan Tsunami and the Relationship with Coastal Structures. Coastal Engineering Journal, 2014, 56, 1450016-1-1450016-21.	0.7	15
46	Shortâ€ŧerm flood inundation prediction using hydrologicâ€hydraulic models forced with downscaled rainfall from global NWP. Hydrological Processes, 2014, 28, 5844-5859.	1.1	25
47	Several Social Factors Contributing to Floods and Characteristics of the January 2013 Flood in Jakarta, Indonesia. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2014, 70, I_211-I_217.	0.1	13
48	Framework for proper beach nourishment as an adaptation to beach erosion due to sea level rise. Journal of Coastal Research, 2014, 70, 467-472.	0.1	8
49	Breach process simulation of coastal levees broken by the 2011 Tsunami. Journal of Coastal Research, 2014, 70, 302-307.	0.1	1
50	Effects of mud flows from the LUSI mud volcano on the Porong River estuary, Indonesia. Journal of Coastal Research, 2014, 70, 568-573.	0.1	8
51	Beach Morphology Change of Southern Sendai Coast due to 2011 Tohoku Earthquake Tsunami. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2013, 69, I_1391-I_1395.	0.0	8
52	Future Projections of Beach Erosion in Japan using Sea Level Change Data of the MIROC5 model. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2013, 69, I_239-I_247.	0.1	9
53	Morphology Changes on Ishinomaki Coast due to The Great East Japan Tsunami. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2013, 69, I_281-I_285.	0.0	0
54	Long-term area change of two tidal flats in Japan and its future projection due to sea level rise. Journal of Coastal Research, 2013, 165, 1975-1980.	0.1	0

#	Article	IF	CITATIONS
55	Potential impact of climate change at five Japanese beaches. Journal of Coastal Research, 2013, 165, 2185-2190.	0.1	14
56	Breaking process and mechanism of coastal levees on Sendai Bay Coast hit by the 2011 mega tsunami. Journal of Coastal Research, 2013, 65, 772-777.	0.1	7
57	Quasi-2D sediment transport model combined with Bagnold-type bed load transport. Journal of Coastal Research, 2013, 65, 368-373.	0.1	3
58	Assessment of future flood intensification in Central Vietnam using a super-high-resolution climate model output. Journal of Water and Climate Change, 2013, 4, 373-389.	1.2	4
59	Snow glacier melt estimation in tropical Andean glaciers using artificial neural networks. Hydrology and Earth System Sciences, 2013, 17, 1265-1280.	1.9	16
60	Climate Change Impacts on Runoff Regimes at a River Basin Scale in Central Vietnam. Terrestrial, Atmospheric and Oceanic Sciences, 2012, 23, 541.	0.3	10
61	Coastal and Estuarine Morphology Changes Induced by the 2011 Great East Japan Earthquake Tsunami. Coastal Engineering Journal, 2012, 54, 1250010-1-1250010-25.	0.7	126
62	Impact of the 2011 Tohoku Earthquake and Tsunami on Beach Morphology Along the Northern Sendai Coast. Coastal Engineering Journal, 2012, 54, 1250009-1-1250009-15.	0.7	93
63	Breaching of Sandy Coast and Spit Due To The 2011 Tsunami and Their Recovery. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2012, 68, I_581-I_585.	0.0	1
64	INVESTIGATION OF TSUNAMI PROPAGATION CHARACTERISTICS IN RIVER AND ON LAND INDUCED BY THE GREAT EAST JAPAN EARTHQUAKE 2011. Journal of Earthquake and Tsunami, 2012, 06, 1250033.	0.7	26
65	Urban Flood Inundation Model for High Density Building Area. Journal of Disaster Research, 2012, 7, 554-559.	0.4	12
66	FLOW STRUCTURE AND EROSION SUPRESS BY VEGETATION IN OVERFLOW ON LEVEES*. , 2012, , 51-64.		0
67	Exploring sustainability of aquifers based on predictive modeling of sorption characteristics of arsenic enriched Holocene sediments in Bangladesh. Applied Geochemistry, 2011, 26, 636-647.	1.4	8
68	QUASI-2D TRANSPORT MODEL OF SUSPENDED SEDIMENT IN A WAVE FLUME. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2011, 67, I_121-I_126.	0.0	1
69	MODELING FLOOD RUNOFF RESPONSE TO LAND COVER CHANGE WITH RAINFALL SPATIAL DISTRIBUTION IN URBANIZED CATCHMENT. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2011, 67, I_19-I_24.	0.0	11
70	Downscaling Global Weather Forecast Outputs Using ANN for Flood Prediction. Journal of Applied Mathematics, 2011, 2011, 1-14.	0.4	30
71	Backshore coarsening processes triggered by waveâ€induced sand transport: the critical role of storm events. Earth Surface Processes and Landforms, 2010, 35, 1269-1280.	1.2	5
72	Effect of Beach Grass Cover on Beach Thermal Environment in Summer. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2010, 66, 1111-1115.	0.0	0

#	Article	IF	CITATIONS
73	GEOCHEMISTRY OF ARSENIC IN THE HOLOCENE AQUIFER: SOUTH-WESTERN BANGLADESH. , 2010, , 89-101.		0
74	New Method for Estimation of Aeolian Sand Transport Rate Using Ceramic Sand Flux Sensor (UD-101). Sensors, 2009, 9, 9058-9072.	2.1	28
75	SHORT-TERM SAND COARSENING PROCESS IN A BACKSHORE BETWEEN HEADLANDS. , 2009, , .		2
76	Observations of windâ€blown sand under various meteorological conditions at a beach. Journal of Geophysical Research, 2008, 113, .	3.3	40
77	Field Observations of Aeolian Sand Transport Rate Using a Piezoelectric Ceramic Sensor. Proceedings of Coastal Engineering Jsce, 2008, 55, 551-555.	0.1	3
78	Short-term Sand Coarsening Process during a Storm at Aotsuka Beach. Proceedings of Coastal Engineering Jsce, 2008, 55, 706-710.	0.1	0
79	Sediment Transport around Headlands in the Southern Sendai Coast. Proceedings of Coastal Engineering Jsce, 2008, 55, 571-575.	0.1	0
80	ECOLOGICAL EFFECT OF DIVERSION WEIR ON RIVERRINE BENTHIC FAUNAL COMMUNITY. Proceedings of Hydraulic Engineering, 2008, 52, 1159-1164.	0.0	0
81	Experimental Study of Blown Sand in a Vegetated Area. Journal of Coastal Research, 2007, 23, 1175.	0.1	44
82	EXPLORATION OF GEOGRAPHIC WATERSHED CHARACTERISTICS SHAPING FLOW DURATION CURVE. Proceedings of Hydraulic Engineering, 2007, 51, 373-378.	0.0	0
83	Beach Deformation around Headlands in the Southern Sendai Coast. Proceedings of Coastal Engineering Jsce, 2007, 54, 716-720.	0.1	0
84	Field Observations of Threshold Wind Friction Velocity for Sand Transport. Proceedings of Coastal Engineering Jsce, 2007, 54, 536-540.	0.1	0
85	Evaluation of the Grazing Model between Noctiluca and the Prey Considering Carbon Cycle. Proceedings of Coastal Engineering Jsce, 2007, 54, 991-995.	0.1	0
86	LONG-TERM MORPHOLOGICAL CHANGE OF BACKSHORE DUNES. , 2003, , .		4
87	MORPHOLOGICAL CHANGE OF BACKSHORE DUNES AT KASHIMA COASTS, JAPAN. Doboku Gakkai Ronbunshu, 2001, 2001, 175-187.	0.2	0
88	Impact of the 2011 Tohoku Earthquake and Tsunami on Beach Morphology Along the Northern Sendai Coast. , 0, .		1
89	Coastal and Estuarine Morphology Changes Induced by the 2011 Great East Japan Earthquake Tsunami. , O, .		1