Paul L Lucas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7320657/publications.pdf Version: 2024-02-01

<u>Ρλιμ Ι Ιμελ</u>

#	Article	IF	CITATIONS
1	Global drivers of future river flood risk. Nature Climate Change, 2016, 6, 381-385.	18.8	661
2	Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Climatic Change, 2007, 81, 119-159.	3.6	658
3	Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Global Environmental Change, 2017, 42, 237-250.	7.8	523
4	Scenarios in Global Environmental Assessments: Key characteristics and lessons for future use. Global Environmental Change, 2012, 22, 884-895.	7.8	225
5	From Planetary Boundaries to national fair shares of the global safe operating space — How can the scales be bridged?. Global Environmental Change, 2016, 40, 60-72.	7.8	213
6	Downscaling drivers of global environmental change: Enabling use of global SRES scenarios at the national and grid levels. Global Environmental Change, 2007, 17, 114-130.	7.8	201
7	Afforestation for climate change mitigation: Potentials, risks and tradeâ€offs. Global Change Biology, 2020, 26, 1576-1591.	9.5	162
8	Pathways to achieve a set of ambitious global sustainability objectives by 2050: Explorations using the IMAGE integrated assessment model. Technological Forecasting and Social Change, 2015, 98, 303-323.	11.6	141
9	Long-term reduction potential of non-CO2 greenhouse gases. Environmental Science and Policy, 2007, 10, 85-103.	4.9	130
10	Model projections for household energy use in India. Energy Policy, 2011, 39, 7747-7761.	8.8	120
11	Enhancing the relevance of Shared Socioeconomic Pathways for climate change impacts, adaptation and vulnerability research. Climatic Change, 2014, 122, 481-494.	3.6	111
12	A new method for analysing socio-ecological patterns of vulnerability. Regional Environmental Change, 2016, 16, 229-243.	2.9	94
13	The FAIR model: A tool to analyse environmental and costs implications of regimes of future commitments. Environmental Modeling and Assessment, 2005, 10, 115-134.	2.2	77
14	Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios. Global Environmental Change, 2015, 33, 142-153.	7.8	75
15	The role of decentralized systems in providing universal electricity access in Sub-Saharan Africa – A model-based approach. Energy, 2017, 139, 184-195.	8.8	74
16	Abatement costs of post-Kyoto climate regimes. Energy Policy, 2005, 33, 2138-2151.	8.8	73
17	Towards an Integrated Framework for SDGs: Ultimate and Enabling Goals for the Case of Energy. Sustainability, 2013, 5, 4124-4151.	3.2	69
18	Regional abatement action and costs under allocation schemes for emission allowances for achieving low CO2-equivalent concentrations. Climatic Change, 2008, 90, 243-268.	3.6	67

PAUL L LUCAS

#	Article	IF	CITATIONS
19	Allocating planetary boundaries to large economies: Distributional consequences of alternative perspectives on distributive fairness. Global Environmental Change, 2020, 60, 102017.	7.8	64
20	Differentiating Future Commitments on the Basis of Countries' Relative Historical Responsibility for Climate Change: Uncertainties in the â€̃Brazilian Proposal' in the Context of a Policy Implementation. Climatic Change, 2005, 71, 277-301.	3.6	59
21	THE DISTRIBUTION OF THE MAJOR ECONOMIES' EFFORT IN THE DURBAN PLATFORM SCENARIOS. Climate Change Economics, 2013, 04, 1340009.	5.0	59
22	Trade-offs and synergies between universal electricity access and climate change mitigation in Sub-Saharan Africa. Energy Policy, 2018, 114, 355-366.	8.8	56
23	Defining a sustainable development target space for 2030 and 2050. One Earth, 2022, 5, 142-156.	6.8	54
24	Multi-Stage: A Rule-Based Evolution of Future Commitments under the Climate Change Convention. International Environmental Agreements: Politics, Law and Economics, 2006, 6, 1-28.	2.9	49
25	Typology of coastal urban vulnerability under rapid urbanization. PLoS ONE, 2020, 15, e0220936.	2.5	47
26	Long-term marginal abatement cost curves of non-CO2 greenhouse gases. Environmental Science and Policy, 2019, 99, 136-149.	4.9	40
27	Implications of the international reduction pledges on long-term energy system changes and costs in China and India. Energy Policy, 2013, 63, 1032-1041.	8.8	39
28	Multi-model comparison of the economic and energy implications for China and India in an international climate regime. Mitigation and Adaptation Strategies for Global Change, 2015, 20, 1335-1359.	2.1	39
29	Scenario analysis for promoting clean cooking in Sub-Saharan Africa: Costs and benefits. Energy, 2020, 192, 116641.	8.8	38
30	Future impacts of environmental factors on achieving the SDG target on child mortality—A synergistic assessment. Global Environmental Change, 2019, 57, 101925.	7.8	34
31	Integrating Biodiversity and Ecosystem Services in the Post-2015 Development Agenda: Goal Structure, Target Areas and Means of Implementation. Sustainability, 2014, 6, 193-216.	3.2	33
32	Future energy system challenges for Africa: Insights from Integrated Assessment Models. Energy Policy, 2015, 86, 705-717.	8.8	31
33	Horses for courses: analytical tools to explore planetary boundaries. Earth System Dynamics, 2016, 7, 267-279.	7.1	31
34	Advancing a toolkit of diverse futures approaches for global environmental assessments. Ecosystems and People, 2021, 17, 191-204.	3.2	29
35	Comparison of different climate regimes: the impact of broadening participation. Energy Policy, 2009, 37, 5351-5362.	8.8	27
36	The impact of technology availability on the timing and costs of emission reductions for achieving long-term climate targets. Climatic Change, 2014, 123, 559-569.	3.6	26

PAUL L LUCAS

#	Article	IF	CITATIONS
37	Impact of fragmented emission reduction regimes on the energy market and on CO2 emissions related to land use: A case study with China and the European Union as first movers. Technological Forecasting and Social Change, 2015, 90, 220-229.	11.6	18
38	A MULTI-MODEL ANALYSIS OF POST-2020 MITIGATION EFFORTS OF FIVE MAJOR ECONOMIES. Climate Change Economics, 2013, 04, 1340012.	5.0	17
39	How food secure are the green, rocky and middle roads: food security effects in different world development paths. Environmental Research Communications, 2020, 2, 031002.	2.3	17
40	Armed conflict distribution in global drylands through the lens of a typology of socio-ecological vulnerability. Regional Environmental Change, 2014, 14, 1419.	2.9	15
41	Effectively empowering: A different look at bolstering the effectiveness of global environmental assessments. Environmental Science and Policy, 2021, 123, 210-219.	4.9	12
42	Data for long-term marginal abatement cost curves of non-CO2 greenhouse gases. Data in Brief, 2019, 25, 104334.	1.0	6
43	A staged sectoral approach for climate mitigation. , 0, , 183-207.		0