List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7320580/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MRI evaluation of shoulder pathologies in wheelchair users with spinal cord injury and the relation to shoulder pain. Journal of Spinal Cord Medicine, 2022, 45, 916-929.	0.7	13
2	Obtaining wheelchair kinematics with one sensor only? The trade-off between number of inertial sensors and accuracy for measuring wheelchair mobility performance in sports. Journal of Biomechanics, 2022, 130, 110879.	0.9	8
3	Shoulder kinematics and muscle activity following latissimus dorsi transfer for massive irreparable posterosuperior rotator cuff tears in shoulders with pseudoparalysis. Journal of Shoulder and Elbow Surgery, 2022, 31, 1357-1367.	1.2	4
4	Learning of Wheelchair Racing Propulsion Skills Over Three Weeks of Wheeling Practice on an Instrumented Ergometer in Able-Bodied Novices. Frontiers in Rehabilitation Sciences, 2022, 3, .	0.5	2
5	Feasibility of a home-based physiotherapy intervention to promote post-stroke mobility: A randomized controlled pilot study. PLoS ONE, 2022, 17, e0256455.	1.1	6
6	Quantifying Within-Individual Elbow Load Variability in Youth Elite Baseball Pitchers and Its Role in Overuse Injuries. Applied Sciences (Switzerland), 2022, 12, 6549.	1.3	4
7	Influence of biomechanical models on joint kinematics and kinetics in baseball pitching. Sports Biomechanics, 2021, 20, 96-108.	0.8	2
8	The ulnar collateral ligament loading paradox between in-vitro and in-vivo studies on baseball pitching (narrative review). International Biomechanics, 2021, 8, 19-29.	0.9	7
9	Machine Learning to Improve Orientation Estimation in Sports Situations Challenging for Inertial Sensor Use. Frontiers in Sports and Active Living, 2021, 3, 670263.	0.9	10
10	Individualised Ball Speed Prediction in Baseball Pitching Based on IMU Data. Sensors, 2021, 21, 7442.	2.1	5
11	Establishing the Role of Elbow Muscles by Evaluating Muscle Activation and Co-contraction Levels at Maximal External Rotation in Fastball Pitching. Frontiers in Sports and Active Living, 2021, 3, 698592.	0.9	6
12	Physiological and biomechanical comparison of overground, treadmill, and ergometer handrim wheelchair propulsion in able-bodied subjects under standardized conditions. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 136.	2.4	8
13	Effects of seat height, wheelchair mass and additional grip on a field-based wheelchair basketball mobility performance test. Technology and Disability, 2020, 32, 93-102.	0.3	6
14	Technical Note: A Novel Servo-Driven Dual-Roller Handrim Wheelchair Ergometer. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 953-960.	2.7	14
15	Effects of a Disturbed Kinetic Chain in the Fastball Pitch on Elbow Kinetics and Ball Speed. Proceedings (mdpi), 2020, 49, 67.	0.2	0
16	Are UCL Injuries a Matter of Bad Luck? The Role of Variability and Fatigue Quantified. Proceedings (mdpi), 2020, 49, 107.	0.2	1
17	Wearable Wheelchair Mobility Performance Measurement in Basketball, Rugby, and Tennis: Lessons for Classification and Training. Sensors, 2020, 20, 3518.	2.1	17
18	Determining and Controlling External Power Output During Regular Handrim Wheelchair Propulsion. Journal of Visualized Experiments, 2020, , .	0.2	7

#	Article	IF	CITATIONS
19	Measuring Handrim Wheelchair Propulsion in the Lab: A Critical Analysis of Stationary Ergometers. IEEE Reviews in Biomedical Engineering, 2020, 13, 199-211.	13.1	15
20	Push-off forces in elite short-track speed skating. Sports Biomechanics, 2019, 18, 527-538.	0.8	10
21	Lead knee extension contributes to drag-flick performance in field hockey. International Journal of Performance Analysis in Sport, 2019, 19, 556-566.	0.5	1
22	Improving Mobility Performance in Wheelchair Basketball. Journal of Sport Rehabilitation, 2019, 28, 59-66.	0.4	13
23	Scapular kinematics in professional wheelchair tennis players. Clinical Biomechanics, 2018, 53, 7-13.	0.5	12
24	Getting in shape: Reconstructing three-dimensional long-track speed skating kinematics by comparing several body pose reconstruction techniques. Journal of Biomechanics, 2018, 69, 103-112.	0.9	9
25	Scapular kinematics during manual wheelchair propulsion in able-bodied participants. Clinical Biomechanics, 2018, 54, 54-61.	0.5	Ο
26	Development, construct validity and test–retest reliability of a field-based wheelchair mobility performance test for wheelchair basketball. Journal of Sports Sciences, 2018, 36, 23-32.	1.0	29
27	Focus of attention instructions during baseball pitching training. International Journal of Sports Science and Coaching, 2018, 13, 391-397.	0.7	22
28	Timing of peak pelvis and thorax rotation velocity in baseball pitching. The Journal of Physical Fitness and Sports Medicine, 2018, 7, 269-277.	0.2	9
29	Knee Angle and Stride Length in Association with Ball Speed in Youth Baseball Pitchers. Sports, 2018, 6, 51.	0.7	18
30	A musculoskeletal model of the hand and wrist: model definition and evaluation. Computer Methods in Biomechanics and Biomedical Engineering, 2018, 21, 548-557.	0.9	20
31	Asymmetry and evolution over a one-year period of the upward rotation of the scapula in youth baseball pitchers. International Biomechanics, 2018, 5, 57-62.	0.9	1
32	Power in sports: A literature review on the application, assumptions, and terminology of mechanical power in sport research. Journal of Biomechanics, 2018, 79, 1-14.	0.9	22
33	Influence of Posture Variation on Shoulder Muscle Activity, Heart Rate, and Perceived Exertion in a Repetitive Manual Task. IISE Transactions on Occupational Ergonomics and Human Factors, 2017, 5, 47-64.	0.5	2
34	Effects of Offense, Defense, and Ball Possession on Mobility Performance in Wheelchair Basketball. Adapted Physical Activity Quarterly, 2017, 34, 382-400.	0.6	8
35	Anatomical parameters for musculoskeletal modeling of the hand and wrist. International Biomechanics, 2016, 3, 40-49.	0.9	22
36	ls rotating between static and dynamic work beneficial for our fatigue state?. Journal of Electromyography and Kinesiology, 2016, 28, 104-113.	0.7	11

#	Article	IF	CITATIONS
37	Elite Athlete Motor and Loading Actions on The Upper Limb in Baseball Pitching. Procedia Engineering, 2016, 147, 181-185.	1.2	6
38	Push Characteristics in Wheelchair Court Sport Sprinting. Procedia Engineering, 2016, 147, 730-734.	1.2	23
39	Wireless instrumented klapskates for long-track speed skating. Sports Engineering, 2016, 19, 273-281.	0.5	15
40	The biomechanical effect of clavicular shortening on shoulder muscle function, a simulation study. Clinical Biomechanics, 2016, 37, 141-146.	0.5	12
41	From big data to rich data: The key features of athlete wheelchair mobility performance. Journal of Biomechanics, 2016, 49, 3340-3346.	0.9	42
42	Can shoulder joint reaction forces be estimated by neural networks?. Journal of Biomechanics, 2016, 49, 73-79.	0.9	27
43	Kinematic Analyses of Patients with Reverse Shoulder Arthroplasty. , 2016, , 123-130.		0
44	Do field position and playing standard influence athlete performance in wheelchair basketball?. Journal of Sports Sciences, 2016, 34, 811-820.	1.0	29
45	Measuring 3D Hand and Finger Kinematics—A Comparison between Inertial Sensing and an Opto-Electronic Marker System. PLoS ONE, 2016, 11, e0164889.	1.1	28
46	Wheel Skid Correction is a Prerequisite to Reliably Measure Wheelchair Sports Kinematics Based on Inertial Sensors. Procedia Engineering, 2015, 112, 207-212.	1.2	21
47	Low-Intensity Wheelchair Training in Inactive People with Long-Term Spinal Cord Injury. American Journal of Physical Medicine and Rehabilitation, 2015, 94, 975-986.	0.7	10
48	The effect of scaling physiological cross-sectional area on musculoskeletal model predictions. Journal of Biomechanics, 2015, 48, 1760-1768.	0.9	19
49	Task variation during simulated, repetitive, low-intensity work – influence on manifestation of shoulder muscle fatigue, perceived discomfort and upper-body postures. Ergonomics, 2015, 58, 1851-1867.	1.1	32
50	Comparison of measurements of medial gastrocnemius architectural parameters from ultrasound and diffusion tensor images. Journal of Biomechanics, 2015, 48, 1133-1140.	0.9	80
51	Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 26.	2.4	29
52	Wheelchair-specific fitness of inactive people with long-term spinal cord injury. Journal of Rehabilitation Medicine, 2015, 47, 330-337.	0.8	16
53	Opportunities for measuring wheelchair kinematics in match settings; reliability of a three inertial sensor configuration. Journal of Biomechanics, 2015, 48, 3398-3405.	0.9	54
54	Initial Skill Acquisition of Handrim Wheelchair Propulsion: A New Perspective. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 104-113.	2.7	51

#	Article	IF	CITATIONS
55	Impact of Combined Skin Sparing Mastectomy and Immediate Subpectoral Prosthetic Reconstruction on the Pectoralis Major Muscle Function. Annals of Plastic Surgery, 2014, 72, 631-637.	0.5	27
56	Are pushing and pulling work-related risk factors for upper extremity symptoms? A systematic review of observational studies. Occupational and Environmental Medicine, 2014, 71, 788-795.	1.3	32
57	The effect of crank position and backrest inclination on shoulder load and mechanical efficiency during handcycling. Scandinavian Journal of Medicine and Science in Sports, 2014, 24, 386-394.	1.3	22
58	The Supraspinatus and the Deltoid – Not just two arm elevators. Human Movement Science, 2014, 33, 273-283.	0.6	14
59	Interactions of touch feedback with muscle vibration and galvanic vestibular stimulation in the control of trunk posture. Gait and Posture, 2014, 39, 745-749.	0.6	13
60	Isokinetic strength differences between patients with primary reverse and total shoulder prostheses. Clinical Biomechanics, 2014, 29, 965-970.	0.5	19
61	The influence of task variation on manifestation of fatigue is ambiguous – a literature review. Ergonomics, 2014, 57, 162-174.	1.1	40
62	Geometrical adaptation in ulna and radius of cerebral palsy patients: Measures and consequences. Clinical Biomechanics, 2014, 29, 451-457.	0.5	3
63	Can a 15 m-overground wheelchair sprint be used to assess wheelchair-specific anaerobic work capacity?. Medical Engineering and Physics, 2014, 36, 432-438.	0.8	22
64	Comparison of three local frame definitions for the kinematic analysis of the fingers and the wrist. Journal of Biomechanics, 2014, 47, 2590-2597.	0.9	15
65	Modelling clavicular and scapular kinematics: from measurement to simulation. Medical and Biological Engineering and Computing, 2014, 52, 283-291.	1.6	36
66	Inter-Individual Differences in the Initial 80 Minutes of Motor Learning of Handrim Wheelchair Propulsion. PLoS ONE, 2014, 9, e89729.	1.1	36
67	Variability in bimanual wheelchair propulsion: consistency of two instrumented wheels during handrim wheelchair propulsion on a motor driven treadmill. Journal of NeuroEngineering and Rehabilitation, 2013, 10, 9.	2.4	45
68	Clinical applications of musculoskeletal modelling for the shoulder and upper limb. Medical and Biological Engineering and Computing, 2013, 51, 953-963.	1.6	62
69	Effect of workload setting on propulsion technique in handrim wheelchair propulsion. Medical Engineering and Physics, 2013, 35, 283-288.	0.8	8
70	The influence of simulated rotator cuff tears on the risk for impingement in handbike and handrim wheelchair propulsion. Clinical Biomechanics, 2013, 28, 495-501.	0.5	12
71	Design of a randomized-controlled trial on low-intensity aerobic wheelchair exercise for inactive persons with chronic spinal cord injury. Disability and Rehabilitation, 2013, 35, 1119-1126.	0.9	15
72	Biceps brachii can add to performance of tasks requiring supination in cerebral palsy patients. Journal of Electromyography and Kinesiology, 2013, 23, 516-522.	0.7	12

#	Article	IF	CITATIONS
73	Motor control retraining exercises for shoulder impingement: effects on function, muscle activation, and biomechanics in young adults. Journal of Shoulder and Elbow Surgery, 2013, 22, e11-e19.	1.2	138
74	RELATIVE CONTRIBUTION OF DIFFERENT MUSCLE ENERGY CONSUMPTION PROCESSES IN AN ENERGY-BASED MUSCLE LOAD SHARING COST FUNCTION. Journal of Mechanics in Medicine and Biology, 2013, 13, 1350009.	0.3	1
75	Force Application During Handcycling and Handrim Wheelchair Propulsion: An Initial Comparison. Journal of Applied Biomechanics, 2013, 29, 687-695.	0.3	30
76	De schoudergordel in evenwicht. , 2013, , 33-48.		0
77	Kinematic evaluation of patients with total and reverse shoulder arthroplasty during rehabilitation exercises with different loads. Clinical Biomechanics, 2012, 27, 793-800.	0.5	56
78	Shoulder load during handcycling at different incline and speed conditions. Clinical Biomechanics, 2012, 27, 1-6.	0.5	30
79	The effect of experimental shortening of the clavicle on shoulder kinematics. Clinical Biomechanics, 2012, 27, 777-781.	0.5	48
80	Shoulder load during synchronous handcycling and handrim wheelchair propulsion in persons with paraplegia. Journal of Rehabilitation Medicine, 2012, 44, 222-228.	0.8	62
81	Are Shoulders with A Reverse Shoulder Prosthesis Strong Enough? A Pilot Study. Clinical Orthopaedics and Related Research, 2012, 470, 2185-2192.	0.7	25
82	Determining a long term ambulatory load profile of the shoulder joint: Neural networks predicting input for a musculoskeletal model. Human Movement Science, 2012, 31, 419-428.	0.6	8
83	An EMG-driven musculoskeletal model of the shoulder. Human Movement Science, 2012, 31, 429-447.	0.6	58
84	Are the force characteristics of synchronous handcycling affected by speed and the method to impose power?. Medical Engineering and Physics, 2012, 34, 78-84.	0.8	16
85	Muscle parameters for musculoskeletal modelling of the human neck. Clinical Biomechanics, 2011, 26, 343-351.	0.5	60
86	Load on the shoulder complex during wheelchair propulsion and weight relief lifting. Clinical Biomechanics, 2011, 26, 452-457.	0.5	29
87	Skill acquisition of manual wheelchair propulsion: initial motor learning. BIO Web of Conferences, 2011, 1, 00093.	0.1	0
88	Development and validity of an instrumented handbike: Initial results of propulsion kinetics. Medical Engineering and Physics, 2011, 33, 1167-1173.	0.8	16
89	"What ifâ€∎ The use of biomechanical models for understanding and treating upper extremity musculoskeletal disorders. Manual Therapy, 2011, 16, 48-50.	1.6	13
90	Development of a comprehensive musculoskeletal model of the shoulder and elbow. Medical and Biological Engineering and Computing, 2011, 49, 1425-1435.	1.6	106

#	Article	IF	CITATIONS
91	Comparison of Two Methods for In Vivo Estimation of the Glenohumeral Joint Rotation Center (GH-JRC) of the Patients with Shoulder Hemiarthroplasty. PLoS ONE, 2011, 6, e18488.	1.1	16
92	Functionally interpretable local coordinate systems for the upper extremity using inertial & magnetic measurement systems. Journal of Biomechanics, 2010, 43, 1983-1988.	0.9	86
93	Validation of the Delft Shoulder and Elbow Model using in-vivo glenohumeral joint contact forces. Journal of Biomechanics, 2010, 43, 3007-3014.	0.9	105
94	The effect of elbow angle and external moment on load sharing of elbow muscles. Journal of Electromyography and Kinesiology, 2010, 20, 912-922.	0.7	42
95	Seat height: Effects on submaximal hand rim wheelchair performance during spinal cord injury rehabilitation. Journal of Rehabilitation Medicine, 2009, 41, 143-149.	0.8	39
96	Metabolic cost and mechanical work for the step-to-step transition in walking after successful total ankle arthroplasty. Human Movement Science, 2009, 28, 786-797.	0.6	26
97	Arm load magnitude affects selective shoulder muscle activation. Medical and Biological Engineering and Computing, 2009, 47, 565-572.	1.6	7
98	Shoulder biomechanics: today's consensus and tomorrow's perspectives. Medical and Biological Engineering and Computing, 2009, 47, 463-466.	1.6	22
99	Glenohumeral stability in simulated rotator cuff tears. Journal of Biomechanics, 2009, 42, 1740-1745.	0.9	97
100	Is effective force application in handrim wheelchair propulsion also efficient?. Clinical Biomechanics, 2009, 24, 13-19.	0.5	47
101	A framework for the definition of standardized protocols for measuring upper-extremity kinematics. Clinical Biomechanics, 2009, 24, 246-253.	0.5	115
102	Recording scapular motion using an acromion marker cluster. Gait and Posture, 2009, 29, 123-128.	0.6	153
103	Magnetic distortion in motion labs, implications for validating inertial magnetic sensors. Gait and Posture, 2009, 29, 535-541.	0.6	233
104	Relationship Among Shoulder Proprioception, Kinematics, and Pain After Stroke. Archives of Physical Medicine and Rehabilitation, 2009, 90, 1557-1564.	0.5	46
105	Effect of Body Orientation on Proprioception During Active and Passive Motions. American Journal of Physical Medicine and Rehabilitation, 2009, 88, 979-985.	0.7	19
106	Evaluation of Manual Wheelchair Performance in Everyday Life. Topics in Spinal Cord Injury Rehabilitation, 2009, 15, 1-15.	0.8	15
107	Wheelchair Ambulation. , 2009, , .		0
108	Contribution of the Reverse Endoprosthesis to Glenohumeral Kinematics. Clinical Orthopaedics and Related Research, 2008, 466, 594-598.	0.7	39

#	Article	IF	CITATIONS
109	Quantification of Wrist Joint Laxity. Journal of Hand Surgery, 2008, 33, 667-674.	0.7	9
110	Proprioception of the Shoulder After Stroke. Archives of Physical Medicine and Rehabilitation, 2008, 89, 333-338.	0.5	50
111	Complete 3D kinematics of upper extremity functional tasks. Gait and Posture, 2008, 27, 120-127.	0.6	282
112	Joint stiffness of the ankle during walking after successful mobile-bearing total ankle replacement. Gait and Posture, 2008, 27, 115-119.	0.6	49
113	Corrigendum to "Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity―[Clin. Biomech. 22 (2007) 239–247]. Clinical Biomechanics, 2008, 23, 1303.	0.5	2
114	Kinematics of the contralateral and ipsilateral shoulder: A possible relationship with post-stroke shoulder pain. Journal of Rehabilitation Medicine, 2008, 40, 482-486.	0.8	52
115	Gait Analysis After Successful Mobile Bearing Total Ankle Replacement. Foot and Ankle International, 2007, 28, 313-322.	1.1	107
116	Function of the Pectoralis Major Muscle After Combined Skin-Sparing Mastectomy and Immediate Reconstruction by Subpectoral Implantation of a Prosthesis. Annals of Plastic Surgery, 2007, 59, 605-610.	0.5	54
117	Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clinical Biomechanics, 2007, 22, 239-247.	0.5	380
118	Movement patterns of the upper extremity and trunk associated with impaired forearm rotation in patients with hemiplegic cerebral palsy compared to healthy controls. Gait and Posture, 2007, 25, 485-492.	0.6	36
119	Shoulder function: The perfect compromise between mobility and stability. Journal of Biomechanics, 2007, 40, 2119-2129.	0.9	313
120	Soft-tissue artefact assessment during step-up using fluoroscopy and skin-mounted markers. Journal of Biomechanics, 2007, 40, S18-S24.	0.9	89
121	Glenohumeral joint loading in tetraplegia during weight relief lifting: A simulation study. Clinical Biomechanics, 2006, 21, 128-137.	0.5	28
122	A kinematical analysis of the shoulder after arthroplasty during a hair combing task. Clinical Biomechanics, 2006, 21, S39-S44.	0.5	61
123	Upper extremity musculoskeletal pain during and after rehabilitation in wheelchair-using persons with a spinal cord injury. Spinal Cord, 2006, 44, 152-159.	0.9	116
124	The relationship between two different mechanical cost functions and muscle oxygen consumption. Journal of Biomechanics, 2006, 39, 758-765.	0.9	111
125	Pathological muscle activation patterns in patients with massive rotator cuff tears, with and without subacromial anaesthetics. Manual Therapy, 2006, 11, 231-237.	1.6	77
126	The effects of shoulder load and pinch force on electromyographic activity and blood flow in the forearm during a pinch task. Ergonomics, 2006, 49, 1627-1638.	1.1	6

#	Article	IF	CITATIONS
127	Movement patterns of the upper extremity and trunk before and after corrective surgery of impaired forearm rotation in patients with cerebral palsy. Developmental Medicine and Child Neurology, 2006, 48, 436-441.	1.1	2
128	Movement patterns of the upper extremity and trunk before and after corrective surgery of impaired forearm rotation in patients with cerebral palsy. Developmental Medicine and Child Neurology, 2006, 48, 436.	1.1	13
129	Kinematic Alterations in the Ipsilateral Shoulder of Patients with Hemiplegia Due to Stroke. American Journal of Physical Medicine and Rehabilitation, 2005, 84, 97-105.	0.7	47
130	Influence of task complexity on mechanical efficiency and propulsion technique during learning of hand rim wheelchair propulsion. Medical Engineering and Physics, 2005, 27, 41-49.	0.8	19
131	Increased muscle activity to stabilise mobile bearing knees in patients with rheumatoid arthritis. Knee, 2005, 12, 177-182.	0.8	7
132	ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. Journal of Biomechanics, 2005, 38, 981-992.	0.9	3,077
133	3rd International Congress †Restoration of (wheeled) mobility in SCI rehabilitation: State of the art Ill': its background. Technology and Disability, 2005, 17, 55-61.	0.3	3
134	Requirements for upper extremity motions during activities of daily living. Clinical Biomechanics, 2005, 20, 591-599.	0.5	280
135	Mechanical Load on the Upper Extremity During Wheelchair Activities. Archives of Physical Medicine and Rehabilitation, 2005, 86, 1214-1220.	0.5	132
136	Glenohumeral Contact Forces and Muscle Forces Evaluated in Wheelchair-Related Activities of Daily Living in Able-Bodied Subjects Versus Subjects With Paraplegia and Tetraplegia. Archives of Physical Medicine and Rehabilitation, 2005, 86, 1434-1440.	0.5	80
137	Mechanical loading of the low back and shoulders during pushing and pulling activities. Ergonomics, 2004, 47, 1-18.	1.1	108
138	Effectiveness of tendon transfers for massive rotator cuff tears: a simulation study. Clinical Biomechanics, 2004, 19, 116-122.	0.5	73
139	Biomechanical analysis of tendon transfers for massive rotator cuff tears. Clinical Biomechanics, 2004, 19, 350-357.	0.5	54
140	Mechanical Evaluation of the Pronator Teres Rerouting Tendon Transfer. Journal of Hand Surgery, 2004, 29, 257-262.	0.9	22
141	Three-Dimensional Video Analysis of Forearm Rotation before and After Combined Pronator Teres Rerouting and Flexor Carpi Ulnaris Tendon Transfer Surgery in Patients with Cerebral Palsy. Journal of Hand Surgery, 2004, 29, 55-60.	0.9	26
142	Effect of Wheelchair Stroke Pattern on Mechanical Efficiency. American Journal of Physical Medicine and Rehabilitation, 2004, 83, 640-649.	0.7	53
143	Toward standardized procedures for recording and describing 3-D shoulder movements. Behavior Research Methods, 2003, 35, 440-446.	1.3	22
144	The push force pattern in manual wheelchair propulsion as a balance between cost and effect. Journal of Biomechanics, 2003, 36, 239-247.	0.9	42

#	Article	IF	CITATIONS
145	Muscle oxygen consumption, determined by NIRS, in relation to external force and EMG. Journal of Biomechanics, 2003, 36, 905-912.	0.9	77
146	The effects of precision demands during a low intensity pinching task on muscle activation and load sharing of the fingers. Journal of Electromyography and Kinesiology, 2003, 13, 149-157.	0.7	25
147	Short-term adaptations in co-ordination during the initial phase of learning manual wheelchair propulsion. Journal of Electromyography and Kinesiology, 2003, 13, 217-228.	0.7	28
148	Measurement of wheelchair rolling resistance with a handle bar push technique. Journal of Medical Engineering and Technology, 2003, 27, 249-258.	0.8	36
149	Adaptations in Physiology and Propulsion Techniques During the Initial Phase of Learning Manual Wheelchair Propulsion. American Journal of Physical Medicine and Rehabilitation, 2003, 82, 504-510.	0.7	47
150	Title is missing!. American Journal of Physical Medicine and Rehabilitation, 2003, 82, 504-510.	0.7	4
151	The globe system: An unambiguous description of shoulder positions in daily life movements. Journal of Rehabilitation Research and Development, 2003, 40, 149.	1.6	97
152	The globe system: an unambiguous description of shoulder positions in daily life movements. Journal of Rehabilitation Research and Development, 2003, 40, 147-55.	1.6	27
153	Aerobic Work Capacity in Elite Wheelchair Athletes. American Journal of Physical Medicine and Rehabilitation, 2002, 81, 261-271.	0.7	40
154	Wheelchair propulsion technique and mechanical efficiency after 3 wk of practice. Medicine and Science in Sports and Exercise, 2002, 34, 756-766.	0.2	92
155	Consequence of feedback-based learning of an effective hand rim wheelchair force production on mechanical efficiency. Clinical Biomechanics, 2002, 17, 219-226.	0.5	70
156	Load on the shoulder in low intensity wheelchair propulsion. Clinical Biomechanics, 2002, 17, 211-218.	0.5	146
157	Alternative Modes of Manual Wheelchair Ambulation. American Journal of Physical Medicine and Rehabilitation, 2001, 80, 765-777.	0.7	122
158	Biomechanics and physiology in active manual wheelchair propulsion. Medical Engineering and Physics, 2001, 23, 713-733.	0.8	196
159	Relevance of the Force-Velocity Relationship in the Activation of Mono- and Bi-Articular Muscles in Slow Arm Movements in Humans. Motor Control, 2000, 4, 420-438.	0.3	7
160	Determining the optimal flexion–extension axis of the elbow in vivo — a study of interobserver and intraobserver reliability. Journal of Biomechanics, 2000, 33, 1139-1145.	0.9	37
161	The position of the rotation center of the glenohumeral joint. Journal of Biomechanics, 2000, 33, 1711-1715.	0.9	165
162	Handcycling: different modes and gear ratios. Journal of Medical Engineering and Technology, 2000, 24, 242-249.	0.8	40

#	Article	IF	CITATIONS
163	Force direction in manual wheel chair propulsion: balance between effect and cost. Clinical Biomechanics, 2000, 15, S39-S41.	0.5	24
164	Title is missing!. Clinical Biomechanics, 2000, 15, S1-S2.	0.5	0
165	Predicting mechanical load of the glenohumeral joint, using net joint moments. Clinical Biomechanics, 2000, 15, 315-321.	0.5	34
166	Determination of the optimal elbow axis for evaluation of placement of prostheses. Clinical Biomechanics, 1999, 14, 177-184.	0.5	88
167	EFFECTIVENESS OF FORCE APPLICATION IN MANUAL WHEELCHAIR PROPULSION IN PERSONS WITH SPINAL CORD INJURIES1. American Journal of Physical Medicine and Rehabilitation, 1998, 77, 213-221.	0.7	83
168	PROPULSION TECHNIQUE AND ANAEROBIC WORK CAPACITY IN ELITE WHEELCHAIR ATHLETES. American Journal of Physical Medicine and Rehabilitation, 1998, 77, 222-234.	0.7	48
169	On the Effectiveness of Force Application in Guided Leg Movements. Journal of Motor Behavior, 1997, 29, 27-34.	0.5	8
170	Parameters for modeling the upper extremity. Journal of Biomechanics, 1997, 30, 647-652.	0.9	215
171	ANAEROBIC WORK CAPACITY IN ELITE WHEELCHAIR ATHLETES1. American Journal of Physical Medicine and Rehabilitation, 1997, 76, 355-365.	0.7	30
172	Quasi-static analysis of muscle forces in the shoulder mechanism during wheelchair propulsion. Journal of Biomechanics, 1996, 29, 39-52.	0.9	88
173	The effect of wheelchair handrim tube diameter on propulsion efficiency and force application (tube) Tj ETQq1 1 of the IEEE Engineering in Medicine and Biology Society, 1996, 4, 123-132.	0.784314 1.4	rgBT /Overlo 59
174	Physical strain and mechanical efficiency in hubcrank and handrim wheelchair propulsion. Journal of Medical Engineering and Technology, 1995, 19, 123-131.	0.8	28
175	Forces on the glenohumeral joint in a simulated wheelchairpush. Journal of Biomechanics, 1994, 27, 797.	0.9	2
176	Relationship between physical strain during standardised ADL tasks and physical capacity in men with spinal cord injuries. Spinal Cord, 1994, 32, 844-859.	0.9	58
177	Power Output and Technique of Wheelchair Athletes. Adapted Physical Activity Quarterly, 1994, 11, 71-85.	0.6	25
178	Peak Power Production in Wheelchair Propulsion. Clinical Journal of Sport Medicine, 1994, 4, 14-24.	0.9	6
179	Orientation of the scapula in a simulated wheelchair push. Clinical Biomechanics, 1993, 8, 81-90.	0.5	33
180	Isometric strength, sprint power, and aerobic power in individuals with a spinal cord injury. Medicine and Science in Sports and Exercise, 1993, 25, 863-870.	0.2	70

#	Article	IF	CITATIONS
181	Physiological evaluation of a newly designed lever mechanism for wheelchairs. Journal of Medical Engineering and Technology, 1993, 17, 232-240.	0.8	24
182	Effect of handrim velocity on mechanical efficiency in wheelchair propulsion. Medicine and Science in Sports and Exercise, 1992, 24, 100???107.	0.2	94
183	Geometry parameters for musculoskeletal modelling of the shoulder system. Journal of Biomechanics, 1992, 25, 129-144.	0.9	217
184	Differences in performance between trained and untrained subjects during a 30-s sprint test in a wheelchair ergometer. European Journal of Applied Physiology and Occupational Physiology, 1992, 64, 158-164.	1.2	55
185	Load on the upper extremity in manual wheelchair propulsion. Journal of Electromyography and Kinesiology, 1991, 1, 270-280.	0.7	101
186	Within-cycle characteristics of the wheelchair push in sprinting on a wheelchair ergometer. Medicine and Science in Sports and Exercise, 1991, 23, 264???271.	0.2	53
187	Peak oxygen uptake and maximal power output of Olympic wheelchair-dependent athletes. Medicine and Science in Sports and Exercise, 1991, 23, 1201???1209.	0.2	38
188	Inertia and muscle contraction parameters for musculoskeletal modelling of the shoulder mechanism. Journal of Biomechanics, 1991, 24, 615-629.	0.9	274
189	Computer-controlled wheelchair ergometer. Medical and Biological Engineering and Computing, 1990, 28, 329-338.	1.6	101
190	Optimum cycle frequencies in hand-rim wheelchair propulsion. European Journal of Applied Physiology and Occupational Physiology, 1989, 58, 625-632.	1.2	57
191	The rotation center of the glenohumeral joint. Journal of Biomechanics, 1989, 22, 1092.	0.9	5
192	Propulsion technique in hand rim wheelchair ambulation. Journal of Medical Engineering and Technology, 1989, 13, 136-141.	0.8	40
193	Wheelchair racing. Medicine and Science in Sports and Exercise, 1988, 20, 492???500.	0.2	52
194	Manual wheelchair propulsion: effects of power output on physiology and technique. Medicine and Science in Sports and Exercise, 1988, 20, 70-78.	0.2	89
195	Manual Wheelchair Propulsion. , 0, , 609-636.		5