Andrew J Zele

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7320259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intrinsically Photosensitive (Melanopsin) Retinal Ganglion Cell Function in Glaucoma. , 2011, 52, 4362.		147
2	The Circadian Response of Intrinsically Photosensitive Retinal Ganglion Cells. PLoS ONE, 2011, 6, e17860.	1.1	138
3	Vision under mesopic and scotopic illumination. Frontiers in Psychology, 2014, 5, 1594.	1.1	132
4	The Post-Illumination Pupil Response (PIPR). , 2015, 56, 3838.		127
5	Standards in Pupillography. Frontiers in Neurology, 2019, 10, 129.	1.1	124
6	Intrinsically photosensitive melanopsin retinal ganglion cell contributions to the pupillary light reflex and circadian rhythm. Australasian journal of optometry, The, 2010, 93, 137-149.	0.6	113
7	Measuring Rod and Cone Dynamics in Age-Related Maculopathy. , 2008, 49, 55.		99
8	Assessing Rod, Cone, and Melanopsin Contributions to Human Pupil Flicker Responses. , 2014, 55, 719.		99
9	The postâ€illumination pupil response of melanopsinâ€expressing intrinsically photosensitive retinal ganglion cells in diabetes. Acta Ophthalmologica, 2012, 90, e230-4.	0.6	92
10	Rod contributions to color perception: Linear with rod contrast. Vision Research, 2008, 48, 2586-2592.	0.7	88
11	Melanopsin-Expressing Intrinsically Photosensitive Retinal Ganglion Cells in Retinal Disease. Optometry and Vision Science, 2014, 91, 894-903.	0.6	87
12	Melanopsin photoreception contributes to human visual detection, temporal and colour processing. Scientific Reports, 2018, 8, 3842.	1.6	82
13	Quadrant Field Pupillometry Detects Melanopsin Dysfunction in Glaucoma Suspects and Early Glaucoma. Scientific Reports, 2016, 6, 33373.	1.6	76
14	Cone and melanopsin contributions to human brightness estimation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, B19.	0.8	71
15	Linking impulse response functions to reaction time: Rod and cone reaction time data and a computational model. Vision Research, 2007, 47, 1060-1074.	0.7	62
16	Effect of Age and Refractive Error on the Melanopsin Mediated Post-Illumination Pupil Response (PIPR). Scientific Reports, 2015, 5, 17610.	1.6	60
17	Melanopsin-mediated pupil function is impaired in Parkinson's disease. Scientific Reports, 2018, 8, 7796.	1.6	58
18	Rhodopsin and Melanopsin Contributions to the Early Redilation Phase of the Post-Illumination Pupil Response (PIPR). PLoS ONE, 2016, 11, e0161175.	1.1	57

#	Article	IF	CITATIONS
19	Temporal characteristics of melanopsin inputs to the human pupil light reflex. Vision Research, 2015, 107, 58-66.	0.7	55
20	The color of night: Surface color perception under dim illuminations. Visual Neuroscience, 2006, 23, 525-530.	0.5	45
21	Dark-adapted rod suppression of cone flicker detection: Evaluation of receptoral and postreceptoral interactions. Visual Neuroscience, 2006, 23, 531-537.	0.5	43
22	Altered Visual Sensitivity in Axial High Myopia: A Local Postreceptoral Phenomenon?. , 2006, 47, 3695.		42
23	Intrinsically Photosensitive Retinal Ganglion Cell Function, Sleep Efficiency and Depression in Advanced Age-Related Macular Degeneration. , 2017, 58, 990.		40
24	Persons with Age-Related Maculopathy Risk Genotypes and Clinically Normal Eyes Have Reduced Mesopic Vision. , 2011, 52, 1145.		39
25	Melanopsin-mediated post-illumination pupil response in the peripheral retina. Journal of Vision, 2016, 16, 5.	0.1	39
26	Melanopsin-Mediated Post-Illumination Pupil Response in Early Age-Related Macular Degeneration. , 2015, 56, 6906.		38
27	Melanopsin and Cone Photoreceptor Inputs to the Afferent Pupil Light Response. Frontiers in Neurology, 2019, 10, 529.	1.1	35
28	Cathode-ray-tube monitor artefacts in neurophysiology. Journal of Neuroscience Methods, 2005, 141, 1-7.	1.3	34
29	Anisometropic Amblyopia: Spatial Contrast Sensitivity Deficits in Inferred Magnocellular and Parvocellular Vision. , 2007, 48, 3622.		33
30	Influence of field size on pupil diameter under photopic and mesopic light levels. Australasian journal of optometry, The, 2011, 94, 545-548.	0.6	32
31	Rod and cone pathway signaling and interaction under mesopic illumination. Journal of Vision, 2013, 13, 21-21.	0.1	32
32	Rod–cone interactions and the temporal impulse response of the cone pathway. Vision Research, 2008, 48, 2593-2598.	0.7	31
33	The Effects of Short-Term Light Adaptation on the Human Post-Illumination Pupil Response. , 2016, 57, 5672.		27
34	Mesopic Pelli–Robson contrast sensitivity and <scp>MP</scp> â€1 microperimetry in healthy ageing and ageâ€related macular degeneration. Acta Ophthalmologica, 2016, 94, e772-e778.	0.6	26
35	Melanopsin driven enhancement of cone-mediated visual processing. Vision Research, 2019, 160, 72-81.	0.7	26
36	Spatial and temporal chromatic contrast: Effects on chromatic discrimination for stimuli varying in L- and M-cone excitation. Visual Neuroscience, 2006, 23, 495-501.	0.5	25

#	Article	IF	CITATIONS
37	The accuracy of artificial and natural light measurements by actigraphs. Journal of Sleep Research, 2020, 29, e12963.	1.7	24
38	Chromatic and luminance losses with multiple sclerosis and optic neuritis measured using dynamic random luminance contrast noise. Ophthalmic and Physiological Optics, 2004, 24, 225-233.	1.0	23
39	Chromatic discrimination in the presence of incremental and decremental rod pedestals. Visual Neuroscience, 2008, 25, 399-404.	0.5	21
40	Variation in intraocular pressure following application of tropicamide in three different dog breeds. Veterinary Ophthalmology, 2007, 10, 8-11.	0.6	20
41	Correlated and uncorrelated invisible temporal white noise alters mesopic rod signaling. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, A93.	0.8	19
42	Disclosing disease mechanisms with a spatio-temporal summation paradigm. Graefe's Archive for Clinical and Experimental Ophthalmology, 2006, 244, 425-432.	1.0	18
43	Threshold units: A correct metric for reaction time?. Vision Research, 2007, 47, 608-611.	0.7	18
44	Magnocellular and parvocellular pathway mediated luminance contrast discrimination in amblyopia. Vision Research, 2010, 50, 969-976.	0.7	18
45	Functional Loss in the Magnocellular and Parvocellular Pathways in Patients with Optic Neuritis. , 2011, 52, 8900.		17
46	Effect of rod–cone interactions on mesopic visual performance mediated by chromatic and luminance pathways. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, A7.	0.8	15
47	Non-linearities in the Rod and Cone Photoreceptor Inputs to the Afferent Pupil Light Response. Frontiers in Neurology, 2018, 9, 1140.	1.1	15
48	Spatial and temporal chromatic contrast: Effects on chromatic discrimination for stimuli varying in L- and M-cone excitation. Visual Neuroscience, 2006, 23, 495-501.	0.5	15
49	Local Neuroretinal Function during Acute Hypoxia in Healthy Older People. , 2008, 49, 807.		14
50	Mesopic rod and S-cone interactions revealed by modulation thresholds. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, A19.	0.8	14
51	A Temporal White Noise Analysis for Extracting the Impulse Response Function of the Human Electroretinogram. Translational Vision Science and Technology, 2017, 6, 1.	1.1	14
52	Outer Retinal Structure and Function Deficits Contribute to Circadian Disruption in Patients With Type 2 Diabetes. , 2019, 60, 1870.		14
53	Optimizing methods to isolate melanopsin-directed responses. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2021, 38, 1051.	0.8	14
54	Fos-tau-LacZ mice expose light-activated pathways in the visual system. NeuroImage, 2004, 23, 1027-1038.	2.1	13

#	Article	IF	CITATIONS
55	S-cone discrimination for stimuli with spatial and temporal chromatic contrast. Visual Neuroscience, 2008, 25, 349-354.	0.5	13
56	Adaptation Mechanisms, Eccentricity Profiles, and Clinical Implementation of Red-on-White Perimetry. Optometry and Vision Science, 2008, 85, 309-317.	0.6	13
57	Melanopsin-Driven Pupil Response and Light Exposure in Non-seasonal Major Depressive Disorder. Frontiers in Neurology, 2018, 9, 764.	1.1	13
58	Editorial: The Pupil: Behavior, Anatomy, Physiology and Clinical Biomarkers. Frontiers in Neurology, 2020, 11, 211.	1.1	12
59	Melanopsin hypersensitivity dominates interictal photophobia in migraine. Cephalalgia, 2021, 41, 217-226.	1.8	12
60	The Relationship between BCMO1 Gene Variants and Macular Pigment Optical Density in Persons with and without Age-Related Macular Degeneration. PLoS ONE, 2014, 9, e89069.	1.1	12
61	Effect of optical aberrations on the color appearance of small defocused lights. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2010, 27, 960.	0.8	11
62	The melanopsin-directed white noise electroretinogram (wnERG). Vision Research, 2019, 164, 83-93.	0.7	11
63	Melanopsin Cell Dysfunction is Involved in Sleep Disruption in Parkinson's Disease. Journal of Parkinson's Disease, 2020, 10, 1467-1476.	1.5	11
64	Flicker adaptation can be explained by probability summation between ON- and OFF-mechanisms. Clinical and Experimental Ophthalmology, 2000, 28, 227-229.	1.3	10
65	Fast psychophysical procedures for clinical testing. Australasian journal of optometry, The, 2001, 84, 264-269.	0.6	10
66	Defining the detection mechanisms for symmetric and rectified flicker stimuli. Vision Research, 2007, 47, 2700-2713.	0.7	10
67	The Effect of BCMO1 Gene Variants on Macular Pigment Optical Density in Young Healthy Caucasians. Frontiers in Nutrition, 2014, 1, 22.	1.6	9
68	The role of melanopsin photoreception on visual attention linked pupil responses. European Journal of Neuroscience, 2022, 55, 1986-2002.	1.2	9
69	Robust Indices of Clinical Data: Meaningless Means. , 2005, 46, 4353.		8
70	Macular function in tilted disc syndrome. Documenta Ophthalmologica, 2010, 120, 201-203.	1.0	8
71	Cone Ratios in Myopia and Emmetropia. Optometry and Vision Science, 2015, 92, e1-e5.	0.6	8
72	Light adaptation characteristics of melanopsin. Vision Research, 2021, 188, 126-138.	0.7	8

#	Article	IF	CITATIONS
73	Rhodopsin and melanopsin contributions to human brightness estimation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, A145.	0.8	8
74	The color of night: Surface color categorization by color defective observers under dim illuminations. Visual Neuroscience, 2008, 25, 475-480.	0.5	7
75	Mild systemic hypoxia and photopic visual field sensitivity. Acta Ophthalmologica, 2011, 89, e199-e204.	0.6	7
76	The flicker Pupil Light Response (fPLR). Translational Vision Science and Technology, 2019, 8, 29.	1.1	7
77	Cone and melanopsin contributions to human brightness estimation: reply. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, 1783.	0.8	7
78	Relationship Among CFH and ARMS2 Genotypes, Macular Pigment Optical Density, and Neuroretinal Function in Persons Without Age-Related Macular Degeneration. JAMA Ophthalmology, 2012, 130, 1402.	2.6	6
79	A method for estimating intrinsic noise in electroretinographic (ERG) signals. Documenta Ophthalmologica, 2015, 131, 85-94.	1.0	6
80	Threshold vision under full-field stimulation: Revisiting the minimum number of quanta necessary to evoke a visual sensation. Vision Research, 2021, 180, 1-10.	0.7	6
81	A method for investigating the temporal dynamics of local neuroretinal responses. Journal of Neuroscience Methods, 2008, 167, 207-212.	1.3	5
82	Extrinsic cone-mediated post-receptoral noise inhibits the rod temporal impulse response function. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, B72.	0.8	5
83	Psychophysical Correlates of Retinal Processing. , 2016, , 133-157.		4
84	Supplemental light exposure improves sleep architecture in people with type 2 diabetes. Acta Diabetologica, 2021, 58, 1201-1208.	1.2	4
85	Achromatic impulses unmask L- and M-cone adaptive mechanisms. Clinical and Experimental Ophthalmology, 2001, 29, 197-200.	1.3	3
86	Adaptive bilateral filtering using saliency map for deblocking low bit rate videos. , 2014, , .		3
87	Peripheral detection and resolution with mid-/long-wavelength and short-wavelength sensitive cone systems. Journal of Vision, 2016, 16, 21.	0.1	3
88	Correlated cone noise decreases rod signal contributions to the post-receptoral pathways. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, B78.	0.8	3
89	Design and validation of a chartâ€based measure of the limits of spatial contrast sensitivity. Ophthalmic and Physiological Optics, 2022, 42, 110-122	1.0	3
90	The Functional Field of View of Older Adults is Associated With Contrast Discrimination in the Magnocellular not Parvocellular Pathway. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2021, 76, 1086-1094.	2.4	2

#	Article	IF	CITATIONS
91	The Influence of Melanopsin Activation on the Cone-mediated Photopic White Noise Electroretinogram (wnERG) in Humans. , 2018, , .		0