Yi-Qing Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7320180/publications.pdf Version: 2024-02-01

YLOING YANG

#	Article	IF	CITATIONS
1	A novel PRRX1 loss-of-function variation contributing to familial atrial fibrillation and congenital patent ductus arteriosus. Genetics and Molecular Biology, 2022, 45, e20210378.	1.3	8
2	SMAD1 Loss-of-Function Variant Responsible for Congenital Heart Disease. BioMed Research International, 2022, 2022, 1-8.	1.9	6
3	A novel <i>KLF13</i> mutation underlying congenital patent ductus arteriosus and ventricular septal defect, as well as bicuspid aortic valve. Experimental and Therapeutic Medicine, 2022, 23, 311.	1.8	9
4	Atrial Fibrillation: Focus on Myocardial Connexins and Gap Junctions. Biology, 2022, 11, 489.	2.8	11
5	SOX7 loss-of-function variation as a cause of familial congenital heart disease American Journal of Translational Research (discontinued), 2022, 14, 1672-1684.	0.0	0
6	The covalent NLRP3-inflammasome inhibitor Oridonin relieves myocardial infarction induced myocardial fibrosis and cardiac remodeling in mice. International Immunopharmacology, 2021, 90, 107133.	3.8	52
7	KLF15 Loss-of-Function Mutation Underlying Atrial Fibrillation as well as Ventricular Arrhythmias and Cardiomyopathy. Genes, 2021, 12, 408.	2.4	9
8	SOX17 Loss-of-Function Mutation Underlying Familial Pulmonary Arterial Hypertension. International Heart Journal, 2021, 62, 566-574.	1.0	15
9	Connexin45 (GJC1) loss-of-function mutation contributes to familial atrial fibrillation and conduction disease. Heart Rhythm, 2021, 18, 684-693.	0.7	20
10	SOX17 loss-of-function variation underlying familial congenital heart disease. European Journal of Medical Genetics, 2021, 64, 104211.	1.3	12
11	Detection and functional characterization of a novel <i>MEF2A</i> variation responsible for familial dilated cardiomyopathy. Clinical Chemistry and Laboratory Medicine, 2021, 59, 955-963.	2.3	9
12	PRRX1 Lossâ€ofâ€Function Mutations Underlying Familial Atrial Fibrillation. Journal of the American Heart Association, 2021, 10, e023517.	3.7	10
13	Gender Differences in Arrhythmias: Focused on Atrial Fibrillation. Journal of Cardiovascular Translational Research, 2020, 13, 85-96.	2.4	19
14	Identification and functional characterization of KLF5 as a novel disease gene responsible for familial dilated cardiomyopathy. European Journal of Medical Genetics, 2020, 63, 103827.	1.3	17
15	ISL1 loss-of-function variation causes familial atrial fibrillation. European Journal of Medical Genetics, 2020, 63, 104029.	1.3	13
16	A New <i>TBX5</i> Loss-of-Function Mutation Contributes to Congenital Heart Defect and Atrioventricular Block. International Heart Journal, 2020, 61, 761-768.	1.0	13
17	A novel TBX5 mutation predisposes to familial cardiac septal defects and atrial fibrillation as well as bicuspid aortic valve. Genetics and Molecular Biology, 2020, 43, e20200142.	1.3	13
18	A New <i>ISL1</i> Loss-of-Function Mutation Predisposes to Congenital Double Outlet Right Ventricle. International Heart Journal, 2019, 60, 1113-1122.	1.0	14

#	Article	IF	CITATIONS
19	NR2F2 loss‑of‑function mutation is responsible for congenital bicuspid aortic valve. International Journal of Molecular Medicine, 2019, 43, 1839-1846.	4.0	11
20	HAND2 loss-of-function mutation causes familial dilated cardiomyopathy. European Journal of Medical Genetics, 2019, 62, 103540.	1.3	16
21	ISL1 loss-of-function mutation contributes to congenital heart defects. Heart and Vessels, 2019, 34, 658-668.	1.2	21
22	Identification and Functional Characterization of an ISL1 Mutation Predisposing to Dilated Cardiomyopathy. Journal of Cardiovascular Translational Research, 2019, 12, 257-267.	2.4	14
23	A Novel PITX2c Gain-of-Function Mutation, p.Met207Val, in Patients With Familial Atrial Fibrillation. American Journal of Cardiology, 2019, 123, 787-793.	1.6	18
24	TBX1 loss‑of‑function mutation contributes to congenital conotruncal defects. Experimental and Therapeutic Medicine, 2018, 15, 447-453.	1.8	14
25	A Novel MEF2C Loss-of-Function Mutation Associated with Congenital Double Outlet Right Ventricle. Pediatric Cardiology, 2018, 39, 794-804.	1.3	22
26	GATA6 loss-of-function mutation contributes to congenital bicuspid aortic valve. Gene, 2018, 663, 115-120.	2.2	36
27	ZBTB17 loss-of-function mutation contributes to familial dilated cardiomyopathy. Heart and Vessels, 2018, 33, 722-732.	1.2	5
28	GATA4 Loss-of-Function Mutation and the Congenitally Bicuspid Aortic Valve. American Journal of Cardiology, 2018, 121, 469-474.	1.6	37
29	MEF2C loss-of-function mutation associated with familial dilated cardiomyopathy. Clinical Chemistry and Laboratory Medicine, 2018, 56, 502-511.	2.3	20
30	A novel NR2F2 loss-of-function mutation predisposes to congenital heart defect. European Journal of Medical Genetics, 2018, 61, 197-203.	1.3	27
31	A <i>SHOX2</i> loss-of-function mutation underlying familial atrial fibrillation. International Journal of Medical Sciences, 2018, 15, 1564-1572.	2.5	33
32	Impact of prior permanent pacemaker on longâ€ŧerm clinical outcomes of patients undergoing percutaneous coronary intervention. Clinical Cardiology, 2017, 40, 205-209.	1.8	1
33	HAND1 loss-of-function mutation contributes to congenital double outlet right ventricle. International Journal of Molecular Medicine, 2017, 39, 711-718.	4.0	16
34	An update on the molecular diagnosis of congenital heart disease: focus on loss-of-function mutations. Expert Review of Molecular Diagnostics, 2017, 17, 393-401.	3.1	28
35	HAND1 Loss-of-Function Mutation Causes Tetralogy of Fallot. Pediatric Cardiology, 2017, 38, 547-557.	1.3	13
36	Prevalence and spectrum of NKX2.5 mutations in patients with congenital atrial septal defect and atrioventricular block. Molecular Medicine Reports, 2017, 15, 2247-2254.	2.4	24

#	Article	IF	CITATIONS
37	Prevalence and Spectrum of NKX2-5 Mutations Associated With Sporadic Adult-Onset Dilated Cardiomyopathy. International Heart Journal, 2017, 58, 521-529.	1.0	19
38	TBX20 loss-of-function mutation responsible for familial tetralogy of Fallot or sporadic persistent truncus arteriosus. International Journal of Medical Sciences, 2017, 14, 323-332.	2.5	57
39	MEF2C loss-of-function mutation contributes to congenital heart defects. International Journal of Medical Sciences, 2017, 14, 1143-1153.	2.5	27
40	MESP1 loss-of-function mutation contributes to double outlet right ventricle. Molecular Medicine Reports, 2017, 16, 2747-2754.	2.4	9
41	Prevalence and Spectrum of TBX5 Mutation in Patients with Lone Atrial Fibrillation. International Journal of Medical Sciences, 2016, 13, 60-67.	2.5	19
42	A HAND2 Loss-of-Function Mutation Causes Familial Ventricular Septal Defect and Pulmonary Stenosis. G3: Genes, Genomes, Genetics, 2016, 6, 987-992.	1.8	47
43	TBX5 loss-of-function mutation contributes to atrial fibrillation and atypical Holt-Oram syndrome. Molecular Medicine Reports, 2016, 13, 4349-4356.	2.4	23
44	CASZ1 loss-of-function mutation associated with congenital heart disease. Gene, 2016, 595, 62-68.	2.2	28
45	A novel TBX20 loss-of-function mutation contributes to adult-onset dilated cardiomyopathy or congenital atrial septal defect. Molecular Medicine Reports, 2016, 14, 3307-3314.	2.4	23
46	PITX2 loss-of-function mutation contributes to tetralogy of Fallot. Gene, 2016, 577, 258-264.	2.2	28
47	A novel HAND2 loss-of-function mutation responsible for tetralogy of Fallot. International Journal of Molecular Medicine, 2016, 37, 445-451.	4.0	49
48	Prevalence and spectrum of LRRC10 mutations associated with idiopathic dilated cardiomyopathy. Molecular Medicine Reports, 2015, 12, 3718-3724.	2.4	20
49	PITX2 Loss-of-Function Mutation Contributes to Congenital Endocardial Cushion Defect and Axenfeld-Rieger Syndrome. PLoS ONE, 2015, 10, e0124409.	2.5	29
50	TBX5 loss-of-function mutation contributes to familial dilated cardiomyopathy. Biochemical and Biophysical Research Communications, 2015, 459, 166-171.	2.1	47
51	GATA5 loss-of-function mutation in familial dilated cardiomyopathy. International Journal of Molecular Medicine, 2015, 35, 763-770.	4.0	36
52	A novel NKX2-5 loss-of-function mutation predisposes to familial dilated cardiomyopathy and arrhythmias. International Journal of Molecular Medicine, 2015, 35, 478-486.	4.0	53
53	TBX20 loss-of-function mutation contributes to double outlet right ventricle. International Journal of Molecular Medicine, 2015, 35, 1058-1066.	4.0	32
54	A novel TBX5 loss-of-function mutation associated with sporadic dilated cardiomyopathy. International Journal of Molecular Medicine, 2015, 36, 282-288.	4.0	32

#	Article	IF	CITATIONS
55	A Novel TBX1 Loss-of-Function Mutation Associated with Congenital Heart Disease. Pediatric Cardiology, 2015, 36, 1400-1410.	1.3	34
56	GATA5 loss-of-function mutations associated with congenital bicuspid aortic valve. International Journal of Molecular Medicine, 2014, 33, 1219-1226.	4.0	88
57	A novel PITX2c loss-of-function mutation associated with familial atrial fibrillation. European Journal of Medical Genetics, 2014, 57, 25-31.	1.3	49
58	Prevalence and spectrum of Nkx2.6 mutations in patients with congenital heart disease. European Journal of Medical Genetics, 2014, 57, 579-586.	1.3	21
59	Prevalence and spectrum of GATA4 mutations associated with sporadic dilated cardiomyopathy. Gene, 2014, 548, 174-181.	2.2	43
60	A Novel NKX2.5 Loss-of-Function Mutation Associated With Congenital Bicuspid Aortic Valve. American Journal of Cardiology, 2014, 114, 1891-1895.	1.6	74
61	GATA6 loss-of-function mutations contribute to familial dilated cardiomyopathy. International Journal of Molecular Medicine, 2014, 34, 1315-1322.	4.0	33
62	Mutational Spectrum of the <i>NKX2-5</i> Gene in Patients with Lone Atrial Fibrillation. International Journal of Medical Sciences, 2014, 11, 554-563.	2.5	37
63	Novel PITX2c loss-of-function mutations associated with complex congenital heart disease. International Journal of Molecular Medicine, 2014, 33, 1201-1208.	4.0	32
64	NKX2-6 mutation predisposes to familial atrial fibrillation. International Journal of Molecular Medicine, 2014, 34, 1581-1590.	4.0	25
65	A novel GATA4 loss-of-function mutation responsible for familial dilated cardiomyopathy. International Journal of Molecular Medicine, 2014, 33, 654-660.	4.0	33
66	Somatic GATA5 mutations in sporadic tetralogy of Fallot. International Journal of Molecular Medicine, 2014, 33, 1227-1235.	4.0	27
67	PITX2C loss-of-function mutations responsible for idiopathic atrial fibrillation. Clinics, 2014, 69, 15-22.	1.5	21
68	Prevalence and spectrum of PITX2c mutations associated with familial atrial fibrillation. International Journal of Cardiology, 2013, 168, 2873-2876.	1.7	37
69	GATA4 Loss-of-Function Mutations Underlie Familial Tetralogy of Fallot. Human Mutation, 2013, 34, 1662-1671.	2.5	68
70	Novel GermlineGJA5/Connexin40 Mutations Associated with Lone Atrial Fibrillation Impair Gap Junctional Intercellular Communication. Human Mutation, 2013, 34, n/a-n/a.	2.5	51
71	Prevalence and spectrum of GJA5 mutations associated with lone atrial fibrillation. Molecular Medicine Reports, 2013, 7, 767-774.	2.4	31
72	Mutation spectrum of GATA4 associated with congenital atrial septal defects. Archives of Medical Science, 2013, 6, 976-983.	0.9	21

#	Article	IF	CITATIONS
73	GATA6 loss-of-function mutation in atrial fibrillation. European Journal of Medical Genetics, 2012, 55, 520-526.	1.3	46
74	A Novel GATA4 Loss-of-Function Mutation Associated With Congenital Ventricular Septal Defect. Pediatric Cardiology, 2012, 33, 539-546.	1.3	41
75	Novel GATA4 mutations in patients with congenital ventricular septal defects. Medical Science Monitor, 2012, 18, CR344-CR350.	1.1	29
76	GATA4 loss-of-function mutations in familial atrial fibrillation. Clinica Chimica Acta, 2011, 412, 1825-1830.	1.1	71
77	Familial Aggregation of Lone atrial Fibrillation in the Chinese Population. Internal Medicine, 2010, 49, 2385-2391.	0.7	22
78	Connexin40 nonsense mutation in familial atrial fibrillation. International Journal of Molecular Medicine, 2010, 26, 605-10.	4.0	52
79	Novel connexin40 missense mutations in patients with familial atrial fibrillation. Europace, 2010, 12, 1421-1427.	1.7	64
80	KCNQ1 Gain-of-Function Mutation in Familial Atrial Fibrillation. Science, 2003, 299, 251-254.	12.6	928