Yi-Qing Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7320180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	KCNQ1 Gain-of-Function Mutation in Familial Atrial Fibrillation. Science, 2003, 299, 251-254.	12.6	928
2	GATA5 loss-of-function mutations associated with congenital bicuspid aortic valve. International Journal of Molecular Medicine, 2014, 33, 1219-1226.	4.0	88
3	A Novel NKX2.5 Loss-of-Function Mutation Associated With Congenital Bicuspid Aortic Valve. American Journal of Cardiology, 2014, 114, 1891-1895.	1.6	74
4	GATA4 loss-of-function mutations in familial atrial fibrillation. Clinica Chimica Acta, 2011, 412, 1825-1830.	1.1	71
5	GATA4 Loss-of-Function Mutations Underlie Familial Tetralogy of Fallot. Human Mutation, 2013, 34, 1662-1671.	2.5	68
6	Novel connexin40 missense mutations in patients with familial atrial fibrillation. Europace, 2010, 12, 1421-1427.	1.7	64
7	TBX20 loss-of-function mutation responsible for familial tetralogy of Fallot or sporadic persistent truncus arteriosus. International Journal of Medical Sciences, 2017, 14, 323-332.	2.5	57
8	A novel NKX2-5 loss-of-function mutation predisposes to familial dilated cardiomyopathy and arrhythmias. International Journal of Molecular Medicine, 2015, 35, 478-486.	4.0	53
9	Connexin40 nonsense mutation in familial atrial fibrillation. International Journal of Molecular Medicine, 2010, 26, 605-10.	4.0	52
10	The covalent NLRP3-inflammasome inhibitor Oridonin relieves myocardial infarction induced myocardial fibrosis and cardiac remodeling in mice. International Immunopharmacology, 2021, 90, 107133.	3.8	52
11	Novel GermlineGJA5/Connexin40 Mutations Associated with Lone Atrial Fibrillation Impair Gap Junctional Intercellular Communication. Human Mutation, 2013, 34, n/a-n/a.	2.5	51
12	A novel PITX2c loss-of-function mutation associated with familial atrial fibrillation. European Journal of Medical Genetics, 2014, 57, 25-31.	1.3	49
13	A novel HAND2 loss-of-function mutation responsible for tetralogy of Fallot. International Journal of Molecular Medicine, 2016, 37, 445-451.	4.0	49
14	TBX5 loss-of-function mutation contributes to familial dilated cardiomyopathy. Biochemical and Biophysical Research Communications, 2015, 459, 166-171.	2.1	47
15	A HAND2 Loss-of-Function Mutation Causes Familial Ventricular Septal Defect and Pulmonary Stenosis. G3: Genes, Genomes, Genetics, 2016, 6, 987-992.	1.8	47
16	GATA6 loss-of-function mutation in atrial fibrillation. European Journal of Medical Genetics, 2012, 55, 520-526.	1.3	46
17	Prevalence and spectrum of GATA4 mutations associated with sporadic dilated cardiomyopathy. Gene, 2014, 548, 174-181.	2.2	43
18	A Novel GATA4 Loss-of-Function Mutation Associated With Congenital Ventricular Septal Defect. Pediatric Cardiology, 2012, 33, 539-546.	1.3	41

#	Article	IF	CITATIONS
19	Prevalence and spectrum of PITX2c mutations associated with familial atrial fibrillation. International Journal of Cardiology, 2013, 168, 2873-2876.	1.7	37
20	Mutational Spectrum of the <i>NKX2-5</i> Gene in Patients with Lone Atrial Fibrillation. International Journal of Medical Sciences, 2014, 11, 554-563.	2.5	37
21	GATA4 Loss-of-Function Mutation and the Congenitally Bicuspid Aortic Valve. American Journal of Cardiology, 2018, 121, 469-474.	1.6	37
22	GATA5 loss-of-function mutation in familial dilated cardiomyopathy. International Journal of Molecular Medicine, 2015, 35, 763-770.	4.0	36
23	GATA6 loss-of-function mutation contributes to congenital bicuspid aortic valve. Gene, 2018, 663, 115-120.	2.2	36
24	A Novel TBX1 Loss-of-Function Mutation Associated with Congenital Heart Disease. Pediatric Cardiology, 2015, 36, 1400-1410.	1.3	34
25	GATA6 loss-of-function mutations contribute to familial dilated cardiomyopathy. International Journal of Molecular Medicine, 2014, 34, 1315-1322.	4.0	33
26	A novel GATA4 loss-of-function mutation responsible for familial dilated cardiomyopathy. International Journal of Molecular Medicine, 2014, 33, 654-660.	4.0	33
27	A <i>SHOX2</i> loss-of-function mutation underlying familial atrial fibrillation. International Journal of Medical Sciences, 2018, 15, 1564-1572.	2.5	33
28	Novel PITX2c loss-of-function mutations associated with complex congenital heart disease. International Journal of Molecular Medicine, 2014, 33, 1201-1208.	4.0	32
29	TBX20 loss-of-function mutation contributes to double outlet right ventricle. International Journal of Molecular Medicine, 2015, 35, 1058-1066.	4.0	32
30	A novel TBX5 loss-of-function mutation associated with sporadic dilated cardiomyopathy. International Journal of Molecular Medicine, 2015, 36, 282-288.	4.0	32
31	Prevalence and spectrum of GJA5 mutations associated with lone atrial fibrillation. Molecular Medicine Reports, 2013, 7, 767-774.	2.4	31
32	PITX2 Loss-of-Function Mutation Contributes to Congenital Endocardial Cushion Defect and Axenfeld-Rieger Syndrome. PLoS ONE, 2015, 10, e0124409.	2.5	29
33	Novel GATA4 mutations in patients with congenital ventricular septal defects. Medical Science Monitor, 2012, 18, CR344-CR350.	1.1	29
34	CASZ1 loss-of-function mutation associated with congenital heart disease. Gene, 2016, 595, 62-68.	2.2	28
35	PITX2 loss-of-function mutation contributes to tetralogy of Fallot. Gene, 2016, 577, 258-264.	2.2	28
36	An update on the molecular diagnosis of congenital heart disease: focus on loss-of-function mutations. Expert Review of Molecular Diagnostics, 2017, 17, 393-401.	3.1	28

#	Article	IF	CITATIONS
37	Somatic GATA5 mutations in sporadic tetralogy of Fallot. International Journal of Molecular Medicine, 2014, 33, 1227-1235.	4.0	27
38	MEF2C loss-of-function mutation contributes to congenital heart defects. International Journal of Medical Sciences, 2017, 14, 1143-1153.	2.5	27
39	A novel NR2F2 loss-of-function mutation predisposes to congenital heart defect. European Journal of Medical Genetics, 2018, 61, 197-203.	1.3	27
40	NKX2-6 mutation predisposes to familial atrial fibrillation. International Journal of Molecular Medicine, 2014, 34, 1581-1590.	4.0	25
41	Prevalence and spectrum of NKX2.5 mutations in patients with congenital atrial septal defect and atrioventricular block. Molecular Medicine Reports, 2017, 15, 2247-2254.	2.4	24
42	TBX5 loss-of-function mutation contributes to atrial fibrillation and atypical Holt-Oram syndrome. Molecular Medicine Reports, 2016, 13, 4349-4356.	2.4	23
43	A novel TBX20 loss-of-function mutation contributes to adult-onset dilated cardiomyopathy or congenital atrial septal defect. Molecular Medicine Reports, 2016, 14, 3307-3314.	2.4	23
44	Familial Aggregation of Lone atrial Fibrillation in the Chinese Population. Internal Medicine, 2010, 49, 2385-2391.	0.7	22
45	A Novel MEF2C Loss-of-Function Mutation Associated with Congenital Double Outlet Right Ventricle. Pediatric Cardiology, 2018, 39, 794-804.	1.3	22
46	Mutation spectrum of GATA4 associated with congenital atrial septal defects. Archives of Medical Science, 2013, 6, 976-983.	0.9	21
47	Prevalence and spectrum of Nkx2.6 mutations in patients with congenital heart disease. European Journal of Medical Genetics, 2014, 57, 579-586.	1.3	21
48	ISL1 loss-of-function mutation contributes to congenital heart defects. Heart and Vessels, 2019, 34, 658-668.	1.2	21
49	PITX2C loss-of-function mutations responsible for idiopathic atrial fibrillation. Clinics, 2014, 69, 15-22.	1.5	21
50	Prevalence and spectrum of LRRC10 mutations associated with idiopathic dilated cardiomyopathy. Molecular Medicine Reports, 2015, 12, 3718-3724.	2.4	20
51	MEF2C loss-of-function mutation associated with familial dilated cardiomyopathy. Clinical Chemistry and Laboratory Medicine, 2018, 56, 502-511.	2.3	20
52	Connexin45 (GJC1) loss-of-function mutation contributes to familial atrial fibrillation and conduction disease. Heart Rhythm, 2021, 18, 684-693.	0.7	20
53	Prevalence and Spectrum of TBX5 Mutation in Patients with Lone Atrial Fibrillation. International Journal of Medical Sciences, 2016, 13, 60-67.	2.5	19
54	Prevalence and Spectrum of NKX2-5 Mutations Associated With Sporadic Adult-Onset Dilated Cardiomyopathy. International Heart Journal, 2017, 58, 521-529.	1.0	19

#	Article	IF	CITATIONS
55	Gender Differences in Arrhythmias: Focused on Atrial Fibrillation. Journal of Cardiovascular Translational Research, 2020, 13, 85-96.	2.4	19
56	A Novel PITX2c Gain-of-Function Mutation, p.Met207Val, in Patients With Familial Atrial Fibrillation. American Journal of Cardiology, 2019, 123, 787-793.	1.6	18
57	Identification and functional characterization of KLF5 as a novel disease gene responsible for familial dilated cardiomyopathy. European Journal of Medical Genetics, 2020, 63, 103827.	1.3	17
58	HAND1 loss-of-function mutation contributes to congenital double outlet right ventricle. International Journal of Molecular Medicine, 2017, 39, 711-718.	4.0	16
59	HAND2 loss-of-function mutation causes familial dilated cardiomyopathy. European Journal of Medical Genetics, 2019, 62, 103540.	1.3	16
60	SOX17 Loss-of-Function Mutation Underlying Familial Pulmonary Arterial Hypertension. International Heart Journal, 2021, 62, 566-574.	1.0	15
61	TBX1 loss‑of‑function mutation contributes to congenital conotruncal defects. Experimental and Therapeutic Medicine, 2018, 15, 447-453.	1.8	14
62	A New <i>ISL1</i> Loss-of-Function Mutation Predisposes to Congenital Double Outlet Right Ventricle. International Heart Journal, 2019, 60, 1113-1122.	1.0	14
63	Identification and Functional Characterization of an ISL1 Mutation Predisposing to Dilated Cardiomyopathy. Journal of Cardiovascular Translational Research, 2019, 12, 257-267.	2.4	14
64	HAND1 Loss-of-Function Mutation Causes Tetralogy of Fallot. Pediatric Cardiology, 2017, 38, 547-557.	1.3	13
65	ISL1 loss-of-function variation causes familial atrial fibrillation. European Journal of Medical Genetics, 2020, 63, 104029.	1.3	13
66	A New <i>TBX5</i> Loss-of-Function Mutation Contributes to Congenital Heart Defect and Atrioventricular Block. International Heart Journal, 2020, 61, 761-768.	1.0	13
67	A novel TBX5 mutation predisposes to familial cardiac septal defects and atrial fibrillation as well as bicuspid aortic valve. Genetics and Molecular Biology, 2020, 43, e20200142.	1.3	13
68	SOX17 loss-of-function variation underlying familial congenital heart disease. European Journal of Medical Genetics, 2021, 64, 104211.	1.3	12
69	NR2F2 loss‑of‑function mutation is responsible for congenital bicuspid aortic valve. International Journal of Molecular Medicine, 2019, 43, 1839-1846.	4.0	11
70	Atrial Fibrillation: Focus on Myocardial Connexins and Gap Junctions. Biology, 2022, 11, 489.	2.8	11
71	PRRX1 Lossâ€ofâ€Function Mutations Underlying Familial Atrial Fibrillation. Journal of the American Heart Association, 2021, 10, e023517.	3.7	10
72	MESP1 loss-of-function mutation contributes to double outlet right ventricle. Molecular Medicine Reports, 2017, 16, 2747-2754.	2.4	9

#	Article	IF	CITATIONS
73	KLF15 Loss-of-Function Mutation Underlying Atrial Fibrillation as well as Ventricular Arrhythmias and Cardiomyopathy. Genes, 2021, 12, 408.	2.4	9
74	Detection and functional characterization of a novel <i>MEF2A</i> variation responsible for familial dilated cardiomyopathy. Clinical Chemistry and Laboratory Medicine, 2021, 59, 955-963.	2.3	9
75	A novel <i>KLF13</i> mutation underlying congenital patent ductus arteriosus and ventricular septal defect, as well as bicuspid aortic valve. Experimental and Therapeutic Medicine, 2022, 23, 311.	1.8	9
76	A novel PRRX1 loss-of-function variation contributing to familial atrial fibrillation and congenital patent ductus arteriosus. Genetics and Molecular Biology, 2022, 45, e20210378.	1.3	8
77	SMAD1 Loss-of-Function Variant Responsible for Congenital Heart Disease. BioMed Research International, 2022, 2022, 1-8.	1.9	6
78	ZBTB17 loss-of-function mutation contributes to familial dilated cardiomyopathy. Heart and Vessels, 2018, 33, 722-732.	1.2	5
79	Impact of prior permanent pacemaker on longâ€ŧerm clinical outcomes of patients undergoing percutaneous coronary intervention. Clinical Cardiology, 2017, 40, 205-209.	1.8	1
80	SOX7 loss-of-function variation as a cause of familial congenital heart disease American Journal of Translational Research (discontinued), 2022, 14, 1672-1684.	0.0	0