Domenico Licursi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7319585/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in the Catalytic Conversion of Biomass Components to Ester Derivatives: Challenges and Opportunities. Catalysts, 2022, 12, 455.	1.6	1
2	Tunable HMF hydrogenation to furan diols in a flow reactor using Ru/C as catalyst. Journal of Industrial and Engineering Chemistry, 2021, 100, 390.e1-390.e9.	2.9	24
3	Sustainable Exploitation of Residual Cynara cardunculus L. to Levulinic Acid and n-Butyl Levulinate. Catalysts, 2021, 11, 1082.	1.6	11
4	Direct Alcoholysis of Carbohydrate Precursors and Real Cellulosic Biomasses to Alkyl Levulinates: A Critical Review. Catalysts, 2020, 10, 1221.	1.6	29
5	New Intensification Strategies for the Direct Conversion of Real Biomass into Platform and Fine Chemicals: What Are the Main Improvable Key Aspects?. Catalysts, 2020, 10, 961.	1.6	16
6	One-Pot Alcoholysis of the Lignocellulosic Eucalyptus nitens Biomass to n-Butyl Levulinate, a Valuable Additive for Diesel Motor Fuel. Catalysts, 2020, 10, 509.	1.6	33
7	Multi-Step Exploitation of Raw Arundo donax L. for the Selective Synthesis of Second-Generation Sugars by Chemical and Biological Route. Catalysts, 2020, 10, 79.	1.6	23
8	Turning Point toward the Sustainable Production of 5-Hydroxymethyl-2-furaldehyde in Water: Metal Salts for Its Synthesis from Fructose and Inulin. ACS Sustainable Chemistry and Engineering, 2019, 7, 6830-6838.	3.2	22
9	Insight into the hydrogenation of pure and crude HMF to furan diols using Ru/C as catalyst. Applied Catalysis A: General, 2019, 578, 122-133.	2.2	61
10	Tunable copper-hydrotalcite derived mixed oxides for sustainable ethanol condensation to n-butanol in liquid phase. Journal of Cleaner Production, 2019, 209, 1614-1623.	4.6	43
11	Multi-valorisation of giant reed (Arundo Donax L.) to give levulinic acid and valuable phenolic antioxidants. Industrial Crops and Products, 2018, 112, 6-17.	2.5	30
12	A novel approach to biphasic strategy for intensification of the hydrothermal process to give levulinic acid: Use of an organic non-solvent. Bioresource Technology, 2018, 264, 180-189.	4.8	19
13	A Biorefinery Cascade Conversion of Hemicellulose-Free Eucalyptus Globulus Wood: Production of Concentrated Levulinic Acid Solutions for Î ³ -Valerolactone Sustainable Preparation. Catalysts, 2018, 8, 169.	1.6	29
14	Cascade Strategy for the Tunable Catalytic Valorization of Levulinic Acid and \hat{I}^3 -Valerolactone to 2-Methyltetrahydrofuran and Alcohols. Catalysts, 2018, 8, 277.	1.6	48
15	Microwave-assisted dehydration of fructose and inulin to HMF catalyzed by niobium and zirconium phosphate catalysts. Applied Catalysis B: Environmental, 2017, 206, 364-377.	10.8	101
16	Amberlyst A-70: A surprisingly active catalyst for the MW-assisted dehydration of fructose and inulin to HMF in water. Catalysis Communications, 2017, 97, 146-150.	1.6	46
17	Py-GC/MS and HPLC-DAD characterization of hazelnut shell and cuticle: Insights into possible re-evaluation of waste biomass. Journal of Analytical and Applied Pyrolysis, 2017, 127, 321-328.	2.6	18
18	In-depth characterization of valuable char obtained from hydrothermal conversion of hazelnut shells to levulinic acid. Bioresource Technology, 2017, 244, 880-888.	4.8	48

DOMENICO LICURSI

#	Article	IF	CITATIONS
19	Exploitation of Arundo donax L. Hydrolysis Residue for the Green Synthesis of Flexible Polyurethane Foams. BioResources, 2017, 12, .	0.5	26
20	New Frontiers in the Catalytic Synthesis of Levulinic Acid: From Sugars to Raw and Waste Biomass as Starting Feedstock. Catalysts, 2016, 6, 196.	1.6	180
21	Application of microwave irradiation for the removal of polychlorinated biphenyls from siloxane transformer and hydrocarbon engine oils. Chemosphere, 2016, 159, 72-79.	4.2	17
22	Monitoring/characterization of stickies contaminants coming from a papermaking plant – Toward an innovative exploitation of the screen rejects to levulinic acid. Waste Management, 2016, 49, 469-482.	3.7	34
23	Heterogeneous catalysis for the ketalisation of ethyl levulinate with 1,2-dodecanediol: Opening the way to a new class of bio-degradable surfactants. Catalysis Communications, 2016, 73, 84-87.	1.6	36
24	Hydrothermal Conversion of Giant Reed to Furfural and Levulinic Acid: Optimization of the Process under Microwave Irradiation and Investigation of Distinctive Agronomic Parameters. Molecules, 2015, 20, 21232-21253.	1.7	51
25	Midinfrared FT-IR as a Tool for Monitoring Herbaceous Biomass Composition and Its Conversion to Furfural. Journal of Spectroscopy, 2015, 2015, 1-12.	0.6	42
26	Characterization of the Arundo Donax L. solid residue from hydrothermal conversion: Comparison with technical lignins and application perspectives. Industrial Crops and Products, 2015, 76, 1008-1024.	2.5	43
27	FT-IR Investigation of the Structural Changes of Sulcis and South Africa Coals under Progressive Heating in Vacuum: Correlation with Volatile Matter. Journal of Combustion, 2013, 2013, 1-14.	0.5	4
28	LEVULINIC ACID PRODUCTION FROM WASTE BIOMASS. BioResources, 2012, 7, .	0.5	63
29	Production of Levulinic Acid and n -Butyl Levulinate from the Waste Biomasses Grape Pomace and Cynara Cardunculus L , 0, , .		1