
Hidetoshi Noda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/731934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unique physicochemical and catalytic properties dictated by the B3NO2 ring system. Nature Chemistry, 2017, 9, 571-577.	13.6	148
2	Critical Evaluation and Rate Constants of Chemoselective Ligation Reactions for Stoichiometric Conjugations in Water. ACS Chemical Biology, 2015, 10, 1026-1033.	3.4	140
3	Rapid Ligations with Equimolar Reactants in Water with the Potassium Acyltrifluoroborate (KAT) Amide Formation. Journal of the American Chemical Society, 2014, 136, 5611-5614.	13.7	118
4	Nrf2 Activators Attenuate the Progression of Nonalcoholic Steatohepatitis–Related Fibrosis in a Dietary Rat Model. Molecular Pharmacology, 2013, 84, 62-70.	2.3	115
5	Chemoselective Acylation of Primary Amines and Amides with Potassium Acyltrifluoroborates under Acidic Conditions. Journal of the American Chemical Society, 2017, 139, 1826-1829.	13.7	85
6	Catalytic asymmetric synthesis of CF ₃ -substituted tertiary propargylic alcohols via direct aldol reaction of α-N ₃ amide. Chemical Science, 2017, 8, 3260-3269.	7.4	62
7	Synthesis and chemoselective ligations of MIDA acylboronates with O-Me hydroxylamines. Chemical Science, 2014, 5, 4328-4332.	7.4	61
8	Quaternary β ^{2,2} â€Amino Acids: Catalytic Asymmetric Synthesis and Incorporation into Peptides by Fmocâ€Based Solidâ€Phase Peptide Synthesis. Angewandte Chemie - International Edition, 2018, 57, 818-822.	13.8	61
9	Synthesis of Chemically and Configurationally Stable Monofluoro Acylboronates: Effect of Ligand Structure on their Formation, Properties, and Reactivities. Journal of the American Chemical Society, 2015, 137, 3958-3966.	13.7	56
10	Traceless Electrophilic Amination for the Synthesis of Unprotected Cyclic Î ² -Amino Acids. Journal of the American Chemical Society, 2019, 141, 10530-10537.	13.7	49
11	Catalytic Oligopeptide Synthesis. Organic Letters, 2018, 20, 612-615.	4.6	48
12	Recent Advances in the Catalytic Asymmetric Synthesis of β ² ―and β ^{2,2} â€Amino Acids. European Journal of Organic Chemistry, 2020, 2020, 2350-2361.	2.4	45
13	Synthesis and reactivities of monofluoro acylboronates in chemoselective amide bond forming ligation with hydroxylamines. Organic and Biomolecular Chemistry, 2016, 14, 16-20.	2.8	43
14	Catalytic Asymmetric Synthesis of αâ€Trifluoromethylated Carbinols: A Case Study of Tertiary Propargylic Alcohols. Asian Journal of Organic Chemistry, 2018, 7, 599-612.	2.7	38
15	Synthesis of Unprotected Spirocyclic β-Prolines and β-Homoprolines by Rh-Catalyzed C–H Insertion. Organic Letters, 2019, 21, 9296-9299.	4.6	38
16	Exploiting βâ€Amino Acid Enolates in Direct Catalytic Diastereo―and Enantioselective Câ^'C Bondâ€Forming Reactions. Chemistry - A European Journal, 2018, 24, 15796-15800.	3.3	35
17	Neighboring Protonation Unveils Lewis Acidity in the B ₃ NO ₂ Heterocycle. Journal of the American Chemical Society, 2019, 141, 1546-1554.	13.7	35
18	All Non arbon B ₃ NO ₂ Exotic Heterocycles: Synthesis, Dynamics, and Catalysis. Chemistry - A European Journal, 2019, 25, 4648-4653.	3.3	34

Hidetoshi Noda

#	Article	IF	CITATIONS
19	Direct Catalytic Asymmetric Aldol Addition of an α-CF ₃ Amide to Arylglyoxal Hydrates. Journal of Organic Chemistry, 2017, 82, 8304-8308.	3.2	29
20	<i>O</i> -Benzoylhydroxylamines as Alkyl Nitrene Precursors: Synthesis of Saturated N-Heterocycles from Primary Amines. Organic Letters, 2020, 22, 8769-8773.	4.6	23
21	Direct N-acylation of sulfoximines with carboxylic acids catalyzed by the B ₃ NO ₂ heterocycle. Chemical Communications, 2017, 53, 7447-7450.	4.1	20
22	Quaternary β ^{2,2} â€Amino Acids: Catalytic Asymmetric Synthesis and Incorporation into Peptides by Fmocâ€Based Solidâ€Phase Peptide Synthesis. Angewandte Chemie, 2018, 130, 826-830.	2.0	20
23	Generation and application of Cu-bound alkyl nitrenes for the catalyst-controlled synthesis of cyclic β-amino acids. Chemical Science, 2021, 12, 7809-7817.	7.4	16
24	Catalyst ontrolled Chemoselective Nitrene Transfers. Helvetica Chimica Acta, 2021, 104, e2100140.	1.6	16
25	Sc ³⁺ -Catalyzed Aldol-Type Additions of <i>N</i> -Benzoylcyclopropanecarboxamides via lodide-Mediated Ring-Opening:  Stereoselective Synthesis of γ-Lactams. Organic Letters, 2008, 10, 1661-1664.	4.6	15
26	Lewis Base Assisted Lithium BrÃ,nsted Base Catalysis: A New Entry for Catalytic Asymmetric Synthesis of β ^{2,2} -Amino Acids. Chemical and Pharmaceutical Bulletin, 2019, 67, 1046-1049.	1.3	15
27	Direct enolization chemistry of 7-azaindoline amides: A case study of bis(tetrahydrophosphole)-type ligands. Tetrahedron, 2018, 74, 3301-3305.	1.9	12
28	Direct Catalytic Asymmetric Mannich-Type Reaction of an α-CF3 Amide to Isatin Imines. Synlett, 2019, 30, 488-492.	1.8	12
29	Ligand-Enabled, Copper-Catalyzed Electrophilic Amination for the Asymmetric Synthesis of β-Amino Acids. Organic Letters, 2021, 23, 8617-8621.	4.6	10
30	Imbuing an Old Heterocycle with the Power of Modern Catalysis: An Isoxazolidin-5-one Story. Chemical and Pharmaceutical Bulletin, 2021, 69, 1160-1169.	1.3	10
31	Synthetic fermentation of \hat{l}^2 -peptide macrocycles by thiadiazole-forming ring-closing reactions. Chemical Science, 2018, 9, 2159-2167.	7.4	8
32	Structural and Computational Investigation of Intramolecular N···H Interactions in α―and βâ€Fluorinated 7â€Azaindoline Amides. European Journal of Organic Chemistry, 2018, 2018, 714-722.	2.4	7
33	A Dyl3-catalyzed Mannich-type Reaction of 1-Methylcyclopropanecarboxylate-type Donors for the Stereoselective Synthesis of Pyrrolidines with Quaternary Stereocenters. Chemistry Letters, 2008, 37, 1180-1181.	1.3	6
34	Concise and Stereodivergent Approach to Chromanone Lactones through Copper atalyzed Asymmetric Vinylogous Addition of Siloxyfurans to 2â€Ester‧ubstituted Chromones. Angewandte Chemie - International Edition, 2022, 61, .	13.8	6
35	(2R , 3S)â€3,4,4,4â€Tetrafluorovaline: A Fluorinated Bioisostere of Isoleucine. European Journal of Organic Chemistry, 2020, 2020, 1745-1752.	2.4	5
36	A fluorogenic C4N4 probe for azide-based labelling. Organic and Biomolecular Chemistry, 2019, 17, 1813-1816.	2.8	4

Hidetoshi Noda

#	Article	IF	CITATIONS
37	On the Nitrogen Inversion of Isoxazolidin-5-ones. Chemical and Pharmaceutical Bulletin, 2019, 67, 1248-1249.	1.3	3
38	Design, Synthesis, and Application of Multiboron Heterocycle to Direct Amidation Catalyst. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 971-978.	0.1	3
39	A C4N4 Diaminopyrimidine Fluorophore. Chemistry - A European Journal, 2019, 25, 4299-4304.	3.3	2
40	Cyanomethylation of βâ€Alkoxyaldehydes: Toward a Short Synthesis of Atorvastatin. Asian Journal of Organic Chemistry, 2020, 9, 57-60.	2.7	2
41	A C4N4 Diaminopyrimidine Fluorophore. Chemistry - A European Journal, 2019, 25, 4243-4243.	3.3	0
42	Concise and Stereodivergent Approach to Chromanone Lactones through Copperâ€Catalyzed Asymmetric Vinylogous Addition of Siloxyfurans to 2â€Esterâ€Substituted Chromones. Angewandte Chemie, 2022, 134, .	2.0	0
43	Innenrücktitelbild: Concise and Stereodivergent Approach to Chromanone Lactones through Copperâ€Catalyzed Asymmetric Vinylogous Addition of Siloxyfurans to 2â€Esterâ€6ubstituted Chromones (Angew. Chem. 26/2022). Angewandte Chemie, 2022, 134, .	2.0	0