
Nadine McQuarrie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/731878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proceedings of the United States of America, 2012, 109, 7659-7664.	7.1	548
2	Crustal scale geometry of the Zagros fold–thrust belt, Iran. Journal of Structural Geology, 2004, 26, 519-535.	2.3	416
3	Retrodeforming the Arabia-Eurasia collision zone: Age of collision versus magnitude of continental subduction. Geology, 2013, 41, 315-318.	4.4	327
4	Two-stage subduction history under North America inferred from multiple-frequency tomography. Nature Geoscience, 2008, 1, 458-462.	12.9	262
5	Preliminary stratigraphic and structural architecture of Bhutan: Implications for the along strike architecture of the Himalayan system. Earth and Planetary Science Letters, 2008, 272, 105-117.	4.4	257
6	Lithospheric evolution of the Andean fold–thrust belt, Bolivia, and the origin of the central Andean plateau. Tectonophysics, 2005, 399, 15-37.	2.2	203
7	The kinematic history of the central Andean fold-thrust belt, Bolivia: Implications for building a high plateau. Bulletin of the Geological Society of America, 2002, 114, 950-963.	3.3	198
8	Tectonic Evolution of the Central Andean Plateau and Implications for the Growth of Plateaus. Annual Review of Earth and Planetary Sciences, 2017, 45, 529-559.	11.0	127
9	Geometry and structural evolution of the central Andean backthrust belt, Bolivia. Tectonics, 2001, 20, 669-692.	2.8	95
10	Stable isotope evidence for multiple pulses of rapid surface uplift in the Central Andes, Bolivia. Earth and Planetary Science Letters, 2013, 371-372, 49-58.	4.4	94
11	Geometric, kinematic, and erosional history of the central Andean Plateau, Bolivia (15–17°S). Tectonics, 2008, 27, .	2.8	90
12	The age and rate of displacement along the Main Central Thrust in the western Bhutan Himalaya. Earth and Planetary Science Letters, 2012, 319-320, 146-158.	4.4	90
13	Documenting basin scale, geometry and provenance through detrital geochemical data: Lessons from the Neoproterozoic to Ordovician Lesser, Greater, and Tethyan Himalayan strata of Bhutan. Gondwana Research, 2013, 23, 1491-1510.	6.0	89
14	Quantifying internal strain and deformation temperature in the eastern Himalaya, Bhutan: Implications for the evolution of strain in thrust sheets. Journal of Structural Geology, 2011, 33, 579-608.	2.3	84
15	Placing limits on channel flow: Insights from the Bhutan Himalaya. Earth and Planetary Science Letters, 2010, 290, 375-390.	4.4	83
16	Initial plate geometry, shortening variations, and evolution of the Bolivian orocline. Geology, 2002, 30, 867.	4.4	79
17	Geologic Map of Bhutan. Journal of Maps, 2011, 7, 184-192.	2.0	79
18	Variable shortening rates in the eastern Himalayan thrust belt, Bhutan: Insights from multiple thermochronologic and geochronologic data sets tied to kinematic reconstructions. Tectonics, 2012, 31, .	2.8	79

NADINE MCQUARRIE

#	Article	IF	CITATIONS
19	Linking orography, climate, and exhumation across the central Andes. Geology, 2012, 40, 1135-1138.	4.4	75
20	Variable exhumation rates and variable displacement rates: Documenting recent slowing of Himalayan shortening in western Bhutan. Earth and Planetary Science Letters, 2014, 386, 161-174.	4.4	75
21	Influence of thrust belt geometry and shortening rate on thermochronometer cooling ages: Insights from thermokinematic and erosion modeling of the Bhutan Himalaya. Tectonics, 2015, 34, 1055-1079.	2.8	71
22	Subsidence of a volcanic basin by flexure and lower crustal flow: The eastern Snake River Plain, Idaho. Tectonics, 1998, 17, 203-220.	2.8	67
23	South-American plate advance and forced Andean trench retreat as drivers for transient flat subduction episodes. Nature Communications, 2017, 8, 15249.	12.8	60
24	Temporal variation in climate and tectonic coupling in the central Andes. Geology, 2008, 36, 999.	4.4	57
25	Flattening the Bhutan Himalaya. Earth and Planetary Science Letters, 2012, 349-350, 67-74.	4.4	54
26	Pulsed deformation and variable slip rates within the central Himalayan thrust belt. Lithosphere, 2012, 4, 449-464.	1.4	53
27	Australia going down under: Quantifying continental subduction during arc-continent accretion in Timor-Leste. , 2015, 11, 1860-1883.		51
28	Andean shortening, inversion and exhumation associated with thin- and thick-skinned deformation in southern Peru. Geological Magazine, 2016, 153, 1013-1041.	1.5	48
29	New constraints on the chronology, magnitude, and distribution of deformation within the central Andean orocline. Tectonics, 2013, 32, 1432-1453.	2.8	34
30	Kinematics, Exhumation, and Sedimentation of the North Central Andes (Bolivia): An Integrated Thermochronometer and Thermokinematic Modeling Approach. Tectonics, 2017, 36, 2524-2554.	2.8	34
31	Kinematic reconstruction of the Bolivian orocline. , 2015, 11, 445-462.		33
32	Evolution of crustal thickening in the central Andes, Bolivia. Earth and Planetary Science Letters, 2015, 426, 191-203.	4.4	32
33	Techniques for understanding fold-and-thrust belt kinematics and thermal evolution. , 2017, , .		29
34	The Influence of Foreland Structures on Hinterland Cooling: Evaluating the Drivers of Exhumation in the Eastern Bhutan Himalaya. Tectonics, 2019, 38, 3282-3310.	2.8	28
35	Constraining Central Himalayan (Nepal) Fault Geometry Through Integrated Thermochronology and Thermokinematic Modeling. Tectonics, 2020, 39, e2020TC006399.	2.8	25
36	Crossing the several scales of strain-accomplishing mechanisms in the hinterland of the central Andean fold–thrust belt, Bolivia. Journal of Structural Geology, 2002, 24, 1587-1602.	2.3	23

NADINE MCQUARRIE

#	Article	IF	CITATIONS
37	Resolving spatial heterogeneities in exhumation and surface uplift in Timor-Leste: Constraints on deformation processes in young orogens. Tectonics, 2014, 33, 1089-1112.	2.8	21
38	Testing the effects of topography, geometry, and kinematics on modeled thermochronometer cooling ages in the eastern Bhutan Himalaya. Solid Earth, 2018, 9, 599-627.	2.8	17
39	Kinematic, flexural, and thermal modelling in the Central Andes: Unravelling age and signal of deformation, exhumation, and uplift. Tectonophysics, 2019, 766, 302-325.	2.2	17
40	Landscape Response to Lateral Advection in Convergent Orogens Over Geologic Time Scales. Journal of Geophysical Research F: Earth Surface, 2019, 124, 2056-2078.	2.8	16
41	Reconciling regional continuity with local variability in structure, uplift and exhumation of the Timor orogen. Gondwana Research, 2017, 49, 364-386.	6.0	10
42	Determining kinematic order and relative age of faulting via flexuralâ€kinematic restoration: A case study in far western Nepal. Basin Research, 2019, 31, 1153-1177.	2.7	10
43	Determining the tempo of exhumation in the eastern Himalaya: Part 1. Geometry, kinematics and predicted cooling ages. Basin Research, 2022, 34, 141-169.	2.7	10
44	Quantifying Dextral Shear on the Bristol-Granite Mountains Fault Zone: Successful Geologic Prediction from Kinematic Compatibility of the Eastern California Shear Zone. Journal of Geology, 2009, 117, 37-53.	1.4	9
45	Determining the geometry of the North Anatolian Fault East of the Marmara Sea through integrated stress modeling and remote sensing techniques. Tectonophysics, 2014, 623, 14-22.	2.2	9
46	Determining the tempo of exhumation in the eastern Himalaya: Part 2. Integrating bedrock and detrital cooling ages through thermokinematic modelling. Basin Research, 2022, 34, 170-189.	2.7	5
47	Documenting the geometry and magnitude of shortening at the Allegheny Front: Lycoming County, Pennsylvania, United States. AAPG Bulletin, 2020, 104, 2379-2399.	1.5	2
48	Raising the Colorado Plateau. Geology, 2000, 28, 91-94.	4.4	2
49	Raising the Colorado Plateau: Comment and Reply. Geology, 2000, 28, 767-768.	4.4	Ο