Shadi Houshyar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7318778/publications.pdf

Version: 2024-02-01

279798 302126 1,726 65 23 39 citations h-index g-index papers 67 67 67 1931 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Comprehensive review on sustainable fiber reinforced concrete incorporating recycled textile waste. Journal of Sustainable Cement-Based Materials, 2022, 11, 28-42.	3.1	31
2	Durable, Lightweight, Washable and Comfortable Cooling Textiles from Nanodiamond/Polydopamine/Wool Nanocomposites. Macromolecular Materials and Engineering, 2022, 307, .	3.6	4
3	Liquid metal polymer composite: Flexible, conductive, biocompatible, and antimicrobial scaffold. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1131-1139.	3.4	12
4	Microstructural characterisation of cementitious composite incorporating polymeric fibre: A comprehensive review. Construction and Building Materials, 2022, 335, 127497.	7.2	19
5	A review of recent developments of polypropylene surgical mesh for hernia repair. OpenNano, 2022, 7, 100046.	4.8	11
6	Upcycled Polypropylene and Polytrimethylene Terephthalate Carpet Waste in Reinforcing Cementitious Composites. ACI Materials Journal, 2022, , .	0.2	0
7	Chlorine Gas Sensor with Surface Temperature Control. Sensors, 2022, 22, 4643.	3.8	1
8	Review of Polymeric Biomimetic Small-Diameter Vascular Grafts to Tackle Intimal Hyperplasia. ACS Omega, 2022, 7, 22125-22148.	3 . 5	12
9	An octagonal-shaped conductive HC12 & DERATOR-40 thread embroidered chipless RFID for general IoT applications. Sensors and Actuators A: Physical, 2021, 318, 112485.	4.1	12
10	Progress towards 3D-printing diamond for medical implants: A review. Annals of 3D Printed Medicine, 2021, 1, 100002.	3.1	10
11	Polyamide-nanodiamond filament. Materials Letters, 2021, 285, 128992.	2.6	4
12	Multifunctional Sutures with Temperature Sensing and Infection Control. Macromolecular Bioscience, 2021, 21, e2000364.	4.1	8
13	Nanodiamond-Based Fibrous Composites: A Review of Fabrication Methods, Properties, and Applications. ACS Applied Nano Materials, 2021, 4, 2317-2332.	5.0	15
14	Single-Step Fabrication Method toward 3D Printing Composite Diamond–Titanium Interfaces for Neural Applications. ACS Applied Materials & Samp; Interfaces, 2021, 13, 31474-31484.	8.0	6
15	Nanodiamondâ€chitosan functionalized hernia mesh for biocompatibility and antimicrobial activity. Journal of Biomedical Materials Research - Part A, 2021, 109, 2449-2461.	4.0	10
16	Fluorescent Magnesium Hydroxide Nanosheet Bandages with Tailored Properties for Biocompatible Antimicrobial Wound Dressings and pH Monitoring. ACS Applied Materials & Samp; Interfaces, 2021, 13, 27904-27919.	8.0	32
17	A critical review on drying shrinkage mitigation strategies in cement-based materials. Journal of Building Engineering, 2021, 38, 102210.	3.4	45
18	Preparation and performances of coated polypropylene hernia mesh with natural biomaterials. Colloids and Interface Science Communications, 2021, 45, 100535.	4.1	5

#	Article	IF	Citations
19	Surgical mesh coatings for infection control and temperature sensing: An in-vitro investigation. OpenNano, 2021, 5, 100032.	4.8	1
20	Nanodiamond in composite: Biomedical application. Journal of Biomedical Materials Research - Part A, 2020, 108, 906-922.	4.0	36
21	Sustainable reuse of fashion waste as flame-retardant mattress filing with ecofriendly chemicals. Journal of Cleaner Production, 2020, 251, 119620.	9.3	19
22	Effect of nanocomposite coating and biomolecule functionalization on silk fibroin based conducting 3D braided scaffolds for peripheral nerve tissue engineering. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102131.	3.3	25
23	Electrospun Nanodiamond–Silk Fibroin Membranes: A Multifunctional Platform for Biosensing and Wound-Healing Applications. ACS Applied Materials & Interfaces, 2020, 12, 48408-48419.	8.0	50
24	Diamond in medical devices and sensors: An overview of diamond surfaces. Medical Devices & Sensors, 2020, 3, e10127.	2.7	10
25	Three-dimensional directional nerve guide conduits fabricated by dopamine-functionalized conductive carbon nanofibre-based nanocomposite ink printing. RSC Advances, 2020, 10, 40351-40364.	3.6	12
26	Electrospun Fibre Composite for Controlled Drug Release. MRS Advances, 2020, 5, 2409-2417.	0.9	2
27	Multifunctional Smart Fabrics through Nanodiamond-Polyaniline Nanocomposites. ACS Applied Polymer Materials, 2020, 2, 4848-4855.	4.4	20
28	Nanocomposite-Coated Silk-Based Artificial Conduits: The Influence of Structures on Regeneration of the Peripheral Nerve. ACS Applied Bio Materials, 2020, 3, 4454-4464.	4.6	18
29	Polypropylene-nanodiamond composite for hernia mesh. Materials Science and Engineering C, 2020, 111, 110780.	7.3	31
30	Peripheral Nerve Conduit: Materials and Structures. ACS Chemical Neuroscience, 2019, 10, 3349-3365.	3.5	122
31	Surface-Functionalized Polypropylene Surgical Mesh for Enhanced Performance and Biocompatibility. ACS Applied Bio Materials, 2019, 2, 5905-5915.	4.6	16
32	Performance analysis of grafted poly (2-methacryloyloxyethyl phosphorylcholine) on additively manufactured titanium substrate for hip implant applications. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 100, 103412.	3.1	6
33	Nanodiamond Fabrication of Superhydrophilic Wool Fabrics. Langmuir, 2019, 35, 7105-7111.	3.5	15
34	Fabrication and characterization of nanodiamond coated cotton fabric for improved functionality. Cellulose, 2019, 26, 5797-5806.	4.9	14
35	Nanodiamond/poly-ε-caprolactone nanofibrous scaffold for wound management. Materials Science and Engineering C, 2019, 100, 378-387.	7.3	38
36	Optimisation of grafted phosphorylcholine-based polymer on additively manufactured titanium substrate for hip arthroplasty. Materials Science and Engineering C, 2019, 101, 696-706.	7.3	17

#	Article	IF	CITATIONS
37	Electrospun diamond-silk membranes for biosensing applications. , 2019, , .		2
38	Evaluation of thermal, moisture management and sensorial comfort properties of superabsorbent polyacrylate fabrics for the next-to-skin layer in firefighters' protective clothing. Textile Reseach Journal, 2018, 88, 1077-1088.	2.2	32
39	The impact of ultraviolet light exposure on the performance of polybenzidimazole and polyaramid fabrics: Prediction of end-of-life performance. Journal of Industrial Textiles, 2018, 48, 77-86.	2.4	8
40	Selective laser melted titanium alloys for hip implant applications: Surface modification with new method of polymer grafting. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 87, 312-324.	3.1	24
41	Effect of moisture-wicking materials on the physical and thermo-physiological comfort properties of firefighters' protective clothing. Fibers and Polymers, 2017, 18, 383-389.	2.1	24
42	Comparison of manikin tests with wearer trials., 2017,, 159-171.		3
43	Influence of Wet Cooling Vest on Firefihters' Protective Clothing. Journal of Fiber Bioengineering and Informatics, 2017, 10, 41-49.	0.2	2
44	Effect of repeated laundering and Dry-cleaning on the thermo-physiological comfort properties of aramid fabrics. Fibers and Polymers, 2016, 17, 954-962.	2.1	14
45	Deterioration of polyaramid and polybenzimidazole woven fabrics after ultraviolet irradiation. Journal of Applied Polymer Science, 2016, 133, .	2.6	20
46	Preparation, characterisation, and <i>in vitro</i> evaluation of electrically conducting poly(Éxâ€eaprolactone)â€based nanocomposite scaffolds using <scp>PC</scp> 12 cells. Journal of Biomedical Materials Research - Part A, 2016, 104, 853-865.	4.0	36
47	The impact of super-absorbent materials on the thermo-physiological properties of textiles. Textile Reseach Journal, 2015, 85, 601-608.	2.2	5
48	Evaluation and improvement of thermo-physiological comfort properties of firefighters' protective clothing containing super absorbent materials. Journal of the Textile Institute, 2015, 106, 1394-1402.	1.9	26
49	Recent trends and future scope in the protection and comfort of fire-fighters' personal protective clothing. Fire Science Reviews, 2014, 3, .	0.9	62
50	Design and evaluation of smart wearable undergarment for monitoring physiological extremes in firefighting. , 2014, , .		15
51	Digital Printing of Enzymes on Textile Substrates as Functional Materials. Journal of Fiber Bioengineering and Informatics, 2014, 7, 595-602.	0.2	10
52	The scope for synthesis of macro-RAFT agents by sequential insertion of single monomer units. Polymer Chemistry, 2012, 3, 1879.	3.9	122
53	Some Recent Developments in RAFT Polymerization. ACS Symposium Series, 2012, , 243-258.	0.5	9
54	Interfacial properties of all-polypropylene composites. E-Polymers, 2010, 10, .	3.0	1

Shadi Houshyar

#	Article	IF	CITATIONS
55	Modelling of polypropylene fibre-matrix composites using finite element analysis. EXPRESS Polymer Letters, 2009, 3, 2-12.	2.1	24
56	Biodegradable injectable polyurethanes: Synthesis and evaluation for orthopaedic applications. Biomaterials, 2008, 29, 3762-3770.	11.4	125
57	Mechanical and thermal properties of toughened polypropylene composites. Journal of Applied Polymer Science, 2007, 105, 390-397.	2.6	23
58	Synthesis of two-component injectable polyurethanes for bone tissue engineering. Biomaterials, 2007, 28, 423-433.	11.4	147
59	Mechanical and Thermal Properties of Flexible Poly(propylene) Composites. Macromolecular Materials and Engineering, 2006, 291, 59-67.	3.6	20
60	Tensile creep behaviour of polypropylene fibre reinforced polypropylene composites. Polymer Testing, 2005, 24, 257-264.	4.8	81
61	The effect of fiber concentration on mechanical and thermal properties of fiber-reinforced polypropylene composites. Journal of Applied Polymer Science, 2005, 96, 2260-2272.	2.6	77
62	Influence of Different Woven Geometry in Poly(propylene) Woven Composites. Macromolecular Materials and Engineering, 2005, 290, 45-52.	3.6	41
63	Back Cover: Macromol. Mater. Eng. 1/2005. Macromolecular Materials and Engineering, 2005, 290, 92-92.	3.6	0
64	Tensile properties and creep response of polypropylene fibre composites with variation of fibre diameter. Polymer International, 2004, 53, 1752-1759.	3.1	34
65	Morphology, Thermal and Mechanical Properties of Poly(propylene) Fibre-Matrix Composites. Macromolecular Materials and Engineering, 2003, 288, 599-606.	3.6	50