Deliang Chen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7318627/deliang-chen-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 392
 15,090
 59
 109

 papers
 citations
 h-index
 g-index

 447
 18,850
 5.1
 6.92

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
392	Global water security: A shining star in the dark sky of achieving the sustainable development goals 2022 , 1, 100005		5
391	Changes of Southern Hemisphere westerlies in the future warming climate. <i>Atmospheric Research</i> , 2022 , 270, 106040	5.4	4
390	A vertical transport window of water vapor in the troposphere over the Tibetan Plateau with implications for global climate change. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 1149-1157	6.8	
389	Wind speed reconstruction from a tree-ring difference index in northeastern Inner Mongolia. <i>Dendrochronologia</i> , 2022 , 72, 125938	2.8	1
388	The negative impact of increasing temperatures on rice yields in southern China <i>Science of the Total Environment</i> , 2022 , 820, 153262	10.2	5
387	Large net forest loss in Cambodia's Tonle Sap Lake protected areas during 1992-2019 <i>Ambio</i> , 2022 , 1	6.5	1
386	Estimated changes in different forms of precipitation (snow, sleet, and rain) across China: 1961\(\bar{L}\) 016. Atmospheric Research, 2022 , 270, 106078	5.4	1
385	Glacier change in China over past decades: Spatiotemporal patterns and influencing factors. <i>Earth-Science Reviews</i> , 2022 , 226, 103926	10.2	7
384	Assessments and Corrections of GLDAS2.0 Forcing Data in Four Large Transboundary Rivers in the Tibetan Plateau and Northeast China. <i>Earth and Space Science</i> , 2022 , 9, e2020EA001576	3.1	1
383	Changes in rain and snow over the Tibetan Plateau based on IMERG and Ground-based observation. Journal of Hydrology, 2022 , 606, 127400	6	3
382	Arctic autumn warming since 2002 dominated by changes in moisture modulated by multiple large-scale atmospheric circulations. <i>Atmospheric Research</i> , 2022 , 265, 105879	5.4	1
381	Understanding human influence on climate change in China National Science Review, 2022, 9, nwab113	10.8	10
380	Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks <i>National Science Review</i> , 2022 , 9, nwab150	10.8	5
379	Snow cover persistence reverses the altitudinal patterns of warming above and below 5000 m on the Tibetan Plateau. <i>Science of the Total Environment</i> , 2022 , 803, 149889	10.2	2
378	Spatiotemporal variations of land surface albedo and associated influencing factors on the Tibetan Plateau. <i>Science of the Total Environment</i> , 2022 , 804, 150100	10.2	6
377	Economic growth dominates rising potential flood risk in the Yangtze River and benefits of raising dikes from 1991 to 2015. <i>Environmental Research Letters</i> , 2022 , 17, 034046	6.2	О
376	Understanding and building upon pioneering work of Nobel Prize in Physics 2021 laureates Syukuro Manabe and Klaus Hasselmann: From greenhouse effect to Earth system science and beyond. <i>Science China Earth Sciences</i> , 2022 , 65, 589-600	4.6	1

(2021-2022)

375	The Contribution of Human-Induced Atmospheric Circulation Changes to the Record-Breaking Winter Precipitation Event over Beijing in February 2020. <i>Bulletin of the American Meteorological Society</i> , 2022 , 103, S55-S60	6.1	1
374	Increasing terrestrial ecosystem carbon release in response to autumn cooling and warming. <i>Nature Climate Change</i> , 2022 , 12, 380-385	21.4	2
373	Amplified wintertime Barents Sea warming linked to intensified Barents oscillation. <i>Environmental Research Letters</i> , 2022 , 17, 044068	6.2	1
372	Arctic amplification modulated by Atlantic Multidecadal Oscillation and greenhouse forcing on multidecadal to century scales <i>Nature Communications</i> , 2022 , 13, 1865	17.4	2
371	Deep learning projects future warming-induced vegetation growth changes under SSP scenarios. <i>Advances in Climate Change Research</i> , 2022 , 13, 251-257	4.1	О
370	Rapid urbanization induced daily maximum wind speed decline in metropolitan areas: A case study in the Yangtze River Delta (China). <i>Urban Climate</i> , 2022 , 43, 101147	6.8	1
369	Downscaling of Future Precipitation in Chinal Beijing-Tianjin-Hebei Region Using a Weather Generator. <i>Atmosphere</i> , 2022 , 13, 22	2.7	1
368	Warming and Increased Respiration Have Transformed an Alpine Steppe Ecosystem on the Tibetan Plateau From a Carbon Dioxide Sink Into a Source. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2022 , 127,	3.7	2
367	HomogWS-se: a century-long homogenized dataset of near-surface wind speed observations since 1925 rescued in Sweden. <i>Earth System Science Data</i> , 2022 , 14, 2167-2177	10.5	
366	Contrasting characteristics, changes, and linkages of permafrost between the Arctic and the Third Pole. <i>Earth-Science Reviews</i> , 2022 , 230, 104042	10.2	4
365	Teleconnections between large-scale oceanic-atmospheric patterns and interannual surface wind speed variability across China: Regional and seasonal patterns. <i>Science of the Total Environment</i> , 2022 , 838, 156023	10.2	
364	Mining Can Exacerbate Global Degradation of Dryland. <i>Geophysical Research Letters</i> , 2021 , 48, e2021Gl	_ 09.4 49	003
363	Co-varying temperatures at 200 hPa over the Earth three poles. <i>Science China Earth Sciences</i> , 2021 , 64, 340-350	4.6	1
362	The Role of Mesoscale Convective Systems in Precipitation in the Tibetan Plateau Region. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD035279	4.4	2
361	Impacts of Bias-Corrected ERA5 Initial Snow Depth on Dynamical Downscaling Simulations for the Tibetan Plateau. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126,	4.4	1
360	Reducing livestock snow disaster risk in the Qinghai-Tibetan Plateau due to warming and socioeconomic development. <i>Science of the Total Environment</i> , 2021 , 813, 151869	10.2	1
359	Impacts of Summer Monsoons on flood characteristics in the Lancang-Mekong River Basin. <i>Journal of Hydrology</i> , 2021 , 127256	6	0
358	Hotter and drier climate made the Mediterranean Europe and Northern Africa region a shrubbier landscape. <i>Oecologia</i> , 2021 , 197, 1111-1126	2.9	1

357	Representation of Stony Surface-Atmosphere Interactions in WRF Reduces Cold and Wet Biases for the Southern Tibetan Plateau. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD0352	2 91 4	1
356	Global Near-Surface Wind Speed Changes over the Last Decades Revealed by Reanalyses and CMIP6 Model Simulations. <i>Journal of Climate</i> , 2021 , 34, 2219-2234	4.4	9
355	Impact of climate change on sensitive marine and extreme terrestrial ecosystems: Recent progresses and future challenges: This article belongs to Ambio's 50th Anniversary Collection. Theme: Climate change impact. <i>Ambio</i> , 2021 , 50, 1141-1144	6.5	5
354	The scenario-based variations and causes of future surface soil moisture across China in the twenty-first century. <i>Environmental Research Letters</i> , 2021 , 16, 034061	6.2	1
353	Arctic warming revealed by multiple CMIP6 models: evaluation of historical simulations and quantification of future projection uncertainties. <i>Journal of Climate</i> , 2021 , 1-52	4.4	9
352	Regionalization of Seasonal Precipitation over the Tibetan Plateau and Associated Large-Scale Atmospheric Systems. <i>Journal of Climate</i> , 2021 , 34, 2635-2651	4.4	8
351	Intercomparison of ten ISI-MIP models in simulating discharges along the Lancang-Mekong River basin. <i>Science of the Total Environment</i> , 2021 , 765, 144494	10.2	2
350	Moisture source variations for summer rainfall in different intensity classes over Huaihe River Valley, China. <i>Climate Dynamics</i> , 2021 , 57, 1121-1133	4.2	4
349	The performance of CORDEX-EA-II simulations in simulating seasonal temperature and elevation-dependent warming over the Tibetan Plateau. <i>Climate Dynamics</i> , 2021 , 57, 1135-1153	4.2	1
348	Climatology of Near-Surface Daily Peak Wind Gusts Across Scandinavia: Observations and Model Simulations. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD033534	4.4	2
347	Modeling vegetation greenness and its climate sensitivity with deep-learning technology. <i>Ecology and Evolution</i> , 2021 , 11, 7335-7345	2.8	6
346	Decompositions of Taylor diagram and DISO performance criteria. <i>International Journal of Climatology</i> , 2021 , 41, 5726	3.5	10
345	Saltwater intrusion into groundwater systems in the Mekong Delta and links to global change. <i>Advances in Climate Change Research</i> , 2021 ,	4.1	5
344	Reply to Comment on Thanges of inundation area and water turbidity of Tonle Sap Lake: responses to climate changes or upstream dam construction? [IEnvironmental Research Letters, 2021, 16, 058002	6.2	1
343	Elevation-Dependent Warming Over the Tibetan Plateau From an Ensemble of CORDEX-EA Regional Climate Simulations. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD0339	99174	5
342	Effects of cumulus parameterization and land-surface hydrology schemes on Tibetan Plateau climate simulation during the wet season: insights from the RegCM4 model. <i>Climate Dynamics</i> , 2021 , 57, 1853-1879	4.2	4
341	Uneven Warming Likely Contributed to Declining Near-Surface Wind Speeds in Northern China Between 1961 and 2016. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD033637	4.4	2
340	Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences. <i>Earth-Science Reviews</i> , 2021 , 217, 103625	10.2	25

(2021-2021)

339	Evaluation of a climate simulation over the Yellow River Basin based on a regional climate model (REMO) within the CORDEX. <i>Atmospheric Research</i> , 2021 , 254, 105522	5.4	5
338	Mismatch between the population and meltwater changes creates opportunities and risks for global glacier-fed basins. <i>Science Bulletin</i> , 2021 , 67, 9-9	10.6	5
337	Links between global terrestrial water storage and large-scale modes of climatic variability. <i>Journal of Hydrology</i> , 2021 , 598, 126419	6	2
336	Impact of Synoptic Weather Types on Ground-Level Ozone Concentrations in Guangzhou, China. <i>Asia-Pacific Journal of Atmospheric Sciences</i> , 2021 , 57, 169-180	2.1	4
335	Towards climate resilient urban energy systems: a review. <i>National Science Review</i> , 2021 , 8, nwaa134	10.8	17
334	Varying effects of mining development on ecological conditions and groundwater storage in dry region in Inner Mongolia of China. <i>Journal of Hydrology</i> , 2021 , 597, 125759	6	6
333	Deforestation-induced warming over tropical mountain regions regulated by elevation. <i>Nature Geoscience</i> , 2021 , 14, 23-29	18.3	20
332	Interdecadal summer warming of the Tibetan Plateau potentially regulated by a sea surface temperature anomaly in the Labrador Sea. <i>International Journal of Climatology</i> , 2021 , 41, E2633	3.5	O
331	The contributions of climate change and production area expansion to drought risk for maize in China over the last four decades. <i>International Journal of Climatology</i> , 2021 , 41, E2851	3.5	3
330	Hydroclimate changes over Sweden in the twentieth and twenty-first centuries: a millennium perspective. <i>Geografiska Annaler, Series A: Physical Geography</i> , 2021 , 103, 103-131	1.1	3
329	Summer precipitation characteristics on the southern Tibetan plateau. <i>International Journal of Climatology</i> , 2021 , 41, E3160	3.5	1
328	Impacts of the Westerlies on Planetary Boundary Layer Growth Over a Valley on the North Side of the Central Himalayas. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD033928	4.4	4
327	A decline of observed daily peak wind gusts with distinct seasonality in Australia, 1941-2016. Journal of Climate, 2021 , 1-63	4.4	1
326	Quantifying Human-Induced Dynamic and Thermodynamic Contributions to Severe Cold Outbreaks Like November 2019 in the Eastern United States. <i>Bulletin of the American Meteorological Society</i> , 2021 , 102, S17-S23	6.1	2
325	How Were the Eastward-Moving Heavy Rainfall Events from the Tibetan Plateau to the Lower Reaches of the Yangtze River Enhanced?. <i>Journal of Climate</i> , 2021 , 34, 607-620	4.4	6
324	Chlorophyll-a concentrations in 82 large alpine lakes on the Tibetan Plateau during 2003 2 017: temporal patial variations and influencing factors. <i>International Journal of Digital Earth</i> , 2021 , 14, 714-7	35 ⁹	4
323	Added value of kilometer-scale modeling over the third pole region: a CORDEX-CPTP pilot study. <i>Climate Dynamics</i> , 2021 , 57, 1673-1687	4.2	19
322	Historical and future climates over the upper and middle reaches of the Yellow River Basin simulated by a regional climate model in CORDEX. <i>Climate Dynamics</i> , 2021 , 56, 2749-2771	4.2	6

321	Indication of paleoecological evidence on the evolution of alpine vegetation productivity and soil erosion in central China since the mid-Holocene. <i>Science China Earth Sciences</i> , 2021 , 64, 1774	4.6	1
320	Assessment of Central Asian heat extremes by statistical downscaling: Validation and future projection for 2015-2100. <i>Advances in Climate Change Research</i> , 2021 , 13, 14-14	4.1	O
319	Past and Future Changes in Climate and Water Resources in the Lancang Mekong River Basin: Current Understanding and Future Research Directions. <i>Engineering</i> , 2021 ,	9.7	1
318	Summer afternoon precipitation associated with wind convergence near the Himalayan glacier fronts. <i>Atmospheric Research</i> , 2021 , 259, 105658	5.4	1
317	Can reservoir regulation mitigate future climate change induced hydrological extremes in the Lancang-Mekong River Basin?. <i>Science of the Total Environment</i> , 2021 , 785, 147322	10.2	16
316	Multidecadal variability of the Tonle Sap Lake flood pulse regime. <i>Hydrological Processes</i> , 2021 , 35, e14.	33.3	6
315	Middle East Climate Response to the Saharan Vegetation Collapse during the Mid-Holocene. Journal of Climate, 2021 , 34, 229-242	4.4	2
314	General overestimation of ERA5 precipitation in flow simulations for High Mountain Asia basins. <i>Environmental Research Communications</i> , 2021 , 3, 121003	3.1	2
313	More frequent summer heat waves in southwestern China linked to the recent declining of Arctic sea ice. <i>Environmental Research Letters</i> , 2020 , 15, 074011	6.2	14
312	Sensitivity of soil freeze/thaw dynamics to environmental conditions at different spatial scales in the central Tibetan Plateau. <i>Science of the Total Environment</i> , 2020 , 734, 139261	10.2	7
311	Remote sensing spatiotemporal patterns of frozen soil and the environmental controls over the Tibetan Plateau during 2002\(\textbf{0} 16. \) Remote Sensing of Environment, 2020 , 247, 111927	13.2	18
310	Simulation of summer precipitation diurnal cycles over the Tibetan Plateau at the gray-zone grid spacing for cumulus parameterization. <i>Climate Dynamics</i> , 2020 , 54, 3525-3539	4.2	31
309	What Caused the Decline of Water Level of Yamzho Yumco During 1975 2012 in the Southern Tibetan Plateau?. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2019 JD031121	4.4	2
308	A Model-Based Flood Hazard Mapping on the Southern Slope of Himalaya. <i>Water (Switzerland)</i> , 2020 , 12, 540	3	16
307	Quantifying Water Scarcity in Northern China Within the Context of Climatic and Societal Changes and South-to-North Water Diversion. <i>Earthis Future</i> , 2020 , 8, e2020EF001492	7.9	9
306	Near-surface mean and gust wind speeds in ERA5 across Sweden: towards an improved gust parametrization. <i>Climate Dynamics</i> , 2020 , 55, 887-907	4.2	22
305	Impacts of anthropogenic warming and uneven regional socio-economic development on global river flood risk. <i>Journal of Hydrology</i> , 2020 , 590, 125262	6	12
304	Dynamical downscaling simulation and projection for mean and extreme temperature and precipitation over central Asia. <i>Climate Dynamics</i> , 2020 , 54, 3279-3306	4.2	17

(2020-2020)

303	Quantifying the impacts of climate change and extreme climate events on energy systems. <i>Nature Energy</i> , 2020 , 5, 150-159	62.3	121
302	Conditional Attribution of the 2018 Summer Extreme Heat over Northeast China: Roles of Urbanization, Global Warming, and Warming-Induced Circulation Changes. <i>Bulletin of the American Meteorological Society</i> , 2020 , 101, S71-S76	6.1	7
301	Flood impact on Mainland Southeast Asia between 1985 and 2018The role of tropical cyclones. Journal of Flood Risk Management, 2020 , 13, e12598	3.1	16
300	Enhancement of the summer extreme precipitation over North China by interactions between moisture convergence and topographic settings. <i>Climate Dynamics</i> , 2020 , 54, 2713-2730	4.2	14
299	Variability of Daily Maximum Wind Speed across China, 19752016: An Examination of Likely Causes. <i>Journal of Climate</i> , 2020 , 33, 2793-2816	4.4	16
298	Temporal and spatial variations of convection, clouds and precipitation over the Tibetan Plateau from recent satellite observations. Part II: Precipitation climatology derived from global precipitation measurement mission. <i>International Journal of Climatology</i> , 2020 , 40, 4858-4875	3.5	10
297	The Rapid Intensification of East Asian Cyclones Around the Korean Peninsula and Their Surface Impacts. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2019JD031632	4.4	3
296	Similarities and Differences in the Mechanisms Causing the European Summer Heatwaves in 2003, 2010, and 2018. <i>Earthis Future</i> , 2020 , 8, e2019EF001386	7.9	29
295	Discharge Estimates for Ungauged Rivers Flowing over Complex High-Mountainous Regions based Solely on Remote Sensing-Derived Datasets. <i>Remote Sensing</i> , 2020 , 12, 1064	5	6
294	A climatology of surfacellir temperature difference over the Tibetan Plateau: Results from multi-source reanalyses. <i>International Journal of Climatology</i> , 2020 , 40, 6080-6094	3.5	15
293	Contrasting precipitation gradient characteristics between westerlies and monsoon dominated upstream river basins in the Third Pole. <i>Chinese Science Bulletin</i> , 2020 , 65, 91-104	2.9	9
292	Effects of sensor response and moving average filter duration on maximum wind gust measurements. <i>Journal of Wind Engineering and Industrial Aerodynamics</i> , 2020 , 206, 104354	3.7	7
291	Effects of the South Asian summer monsoon anomaly on interannual variations in precipitation over the South-Central Tibetan Plateau. <i>Environmental Research Letters</i> , 2020 , 15, 124067	6.2	7
290	Extratropical cyclones over East Asia: climatology, seasonal cycle, and long-term trend. <i>Climate Dynamics</i> , 2020 , 54, 1131-1144	4.2	14
289	Synergy of orographic drag parameterization and high resolution greatly reduces biases of WRF-simulated precipitation in central Himalaya. <i>Climate Dynamics</i> , 2020 , 54, 1729-1740	4.2	30
288	Boreal Winter Surface Air Temperature Responses to Large Tropical Volcanic Eruptions in CMIP5 Models. <i>Journal of Climate</i> , 2020 , 33, 2407-2426	4.4	2
287	Drivers of change in China's energy-related CO emissions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 29-36	11.5	85
286	A hybrid method for PM2.5 source apportionment through WRF-Chem simulations and an assessment of emission-reduction measures in western China. <i>Atmospheric Research</i> , 2020 , 236, 104787	5.4	7

285	Influences of synoptic situation and teleconnections on fog-water collection in the Mediterranean Iberian Peninsula, 2003\(\textbf{Q} 012. \) International Journal of Climatology, 2020 , 40, 3297-3317	3.5	2
284	Divergent sensitivity of surface water and energy variables to precipitation product uncertainty in the Tibetan Plateau. <i>Journal of Hydrology</i> , 2020 , 581, 124338	6	6
283	Impacts of climate change and reservoir operation on streamflow and flood characteristics in the Lancang-Mekong River Basin. <i>Journal of Hydrology</i> , 2020 , 590, 125472	6	29
282	Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives. <i>Earth-Science Reviews</i> , 2020 , 210, 103349	10.2	33
281	Influential Climate Teleconnections for Spatiotemporal Precipitation Variability in the Lancang-Mekong River Basin From 1952 to 2015. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2020JD0333331	4.4	7
280	Global and Polar Region Temperature Change Induced by Single Mega Volcanic Eruption Based on Community Earth System Model Simulation. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL089416	4.9	4
279	Large lakes over the Tibetan Plateau may boost snow downwind: implications for snow disaster. <i>Science Bulletin</i> , 2020 , 65, 1713-1717	10.6	7
278	Extreme hot days over three global mega-regions: Historical fidelity and future projection. <i>Atmospheric Science Letters</i> , 2020 , 21, e1003	2.4	3
277	Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. <i>Science</i> , 2020 , 370, 1095-1099	33.3	54
276	Progress and Challenges in Studying Regional Permafrost in the Tibetan Plateau Using Satellite Remote Sensing and Models. <i>Frontiers in Earth Science</i> , 2020 , 8,	3.5	2
275	Global monsoon response to tropical and Arctic stratospheric aerosol injection. <i>Climate Dynamics</i> , 2020 , 55, 2107-2121	4.2	4
274	Can summer monsoon moisture invade the Jade Pass in Northwestern China?. <i>Climate Dynamics</i> , 2020 , 55, 3101-3115	4.2	5
273	Summary of a workshop on extreme weather events in a warming world organized by the Royal Swedish Academy of Sciences. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2020 , 72, 1-13	3.3	3
272	Projected precipitation changes over China for global warming levels at 1.5 °C and 2 °C in an ensemble of regional climate simulations: impact of bias correction methods. <i>Climatic Change</i> , 2020 , 162, 623-643	4.5	6
271	A robust equatorial Pacific westerly response to tropical volcanism in multiple models. <i>Climate Dynamics</i> , 2020 , 55, 3413-3429	4.2	6
270	On the sensitivity of seasonal and diurnal precipitation to cumulus parameterization over CORDEX-EA-II. <i>Climate Dynamics</i> , 2020 , 54, 373-393	4.2	11
269	Cryosphere Services and Human Well-Being. Sustainability, 2019, 11, 4365	3.6	12
268	Oceanic and atmospheric modes in the Pacific and Atlantic Oceans since the Little Ice Age (LIA): Towards a synthesis. <i>Quaternary Science Reviews</i> , 2019 , 215, 293-307	3.9	10

267	Spatio-temporal variability of fog-water collection in the eastern Iberian Peninsula: 2003\(\textbf{Q} 012\). <i>Atmospheric Research</i> , 2019 , 226, 87-101	5.4	4
266	Temporal and spatial variations of convection and precipitation over the Tibetan Plateau based on recent satellite observations. Part I: Cloud climatology derived from CloudSat and CALIPSO. <i>International Journal of Climatology</i> , 2019 , 39, 5396-5412	3.5	10
265	An approach to homogenize daily peak wind gusts: An application to the Australian series. <i>International Journal of Climatology</i> , 2019 , 39, 2260-2277	3.5	12
264	Tropical cyclone rainfall in the Mekong River Basin for 1983\(\textit{0016}\). Atmospheric Research, 2019 , 226, 66-7	5.4	13
263	More realistic land-use and vegetation parameters in a regional climate model reduce model biases over China. <i>International Journal of Climatology</i> , 2019 , 39, 4825-4837	3.5	5
262	Dry gets drier, wet gets wetter[]A case study over the arid regions of central Asia. <i>International Journal of Climatology</i> , 2019 , 39, 1072-1091	3.5	44
261	How Northern High-Latitude Volcanic Eruptions in Different Seasons Affect ENSO. <i>Journal of Climate</i> , 2019 , 32, 3245-3262	4.4	19
2 60	The Formation of a Dry-Belt in the North Side of Central Himalaya Mountains. <i>Geophysical Research Letters</i> , 2019 , 46, 2993-3000	4.9	6
259	Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects. <i>National Science Review</i> , 2019 , 6, 796-809	10.8	164
258	Impact of near-surface wind speed variability on wind erosion in the eastern agro-pastoral transitional zone of Northern China, 1982\(\begin{align*} \text{2016}. \textit{Agricultural and Forest Meteorology}, \text{ 2019}, 271, 102-115} \end{align*}	5.8	30
257	Anthropogenic Aerosols Cause Recent Pronounced Weakening of Asian Summer Monsoon Relative to Last Four Centuries. <i>Geophysical Research Letters</i> , 2019 , 46, 5469-5479	4.9	38
256	A new perspective on solar dimming over the Tibetan Plateau. <i>International Journal of Climatology</i> , 2019 , 39, 302-316	3.5	3
255	Summer Temperature over the Tibetan Plateau Modulated by Atlantic Multidecadal Variability. Journal of Climate, 2019 , 32, 4055-4067	4.4	13
254	Climate change induced eutrophication of cold-water lake in an ecologically fragile nature reserve. Journal of Environmental Sciences, 2019 , 75, 359-369	6.4	14
253	Variability of winter haze over the Beijing-Tianjin-Hebei region tied to wind speed in the lower troposphere and particulate sources. <i>Atmospheric Research</i> , 2019 , 215, 1-11	5.4	31
252	Interdecadal modulation of the Atlantic Multi-decadal Oscillation (AMO) on southwest China temperature over the past 250 years. <i>Climate Dynamics</i> , 2019 , 52, 2055-2065	4.2	13
251	Forty years of reform and opening up: China's progress toward a sustainable path. <i>Science Advances</i> , 2019 , 5, eaau9413	14.3	98
250	Increase in Surface Friction Dominates the Observed Surface Wind Speed Decline during 1973\(\bar{2}\) 014 in the Northern Hemisphere Lands. <i>Journal of Climate</i> , 2019 , 32, 7421-7435	4.4	24

249	A new global gridded anthropogenic heat flux dataset with high spatial resolution and long-term time series. <i>Scientific Data</i> , 2019 , 6, 139	8.2	21
248	Response of Groundwater Storage and Recharge in the Qaidam Basin (Tibetan Plateau) to Climate Variations From 2002 to 2016. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 9918-9934	4.4	17
247	Development and Evaluation of an Ensemble-Based Data Assimilation System for Regional Reanalysis Over the Tibetan Plateau and Surrounding Regions. <i>Journal of Advances in Modeling Earth Systems</i> , 2019 , 11, 2503-2522	7.1	21
246	Growth decline of Pinus Massoniana in response to warming induced drought and increasing intrinsic water use efficiency in humid subtropical China. <i>Dendrochronologia</i> , 2019 , 57, 125609	2.8	7
245	Northern Hemisphere Land Monsoon Precipitation Increased by the Green Sahara During Middle Holocene. <i>Geophysical Research Letters</i> , 2019 , 46, 9870-9879	4.9	10
244	Contrasting synoptic weather patterns between non-dust high particulate matter events and Asian dust events in Seoul, South Korea. <i>Atmospheric Environment</i> , 2019 , 214, 116864	5.3	15
243	Surface energy budget diagnosis reveals possible mechanism for the different warming rate among Earth three poles in recent decades. <i>Science Bulletin</i> , 2019 , 64, 1140-1143	10.6	27
242	Groundwater Depletion Estimated from GRACE: A Challenge of Sustainable Development in an Arid Region of Central Asia. <i>Remote Sensing</i> , 2019 , 11, 1908	5	23
241	The Amplified Arctic Warming in the Recent Decades may Have Been Overestimated by CMIP5 Models. <i>Geophysical Research Letters</i> , 2019 , 46, 13338-13345	4.9	9
240	Recent recovery of the boreal spring sensible heating over the Tibetan Plateau will continue in CMIP6 future projections. <i>Environmental Research Letters</i> , 2019 , 14, 124066	6.2	13
239	A reversal in global terrestrial stilling and its implications for wind energy production. <i>Nature Climate Change</i> , 2019 , 9, 979-985	21.4	115
238	Atmospheric Water Transport to the Endorheic Tibetan Plateau and Its Effect on the Hydrological Status in the Region. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 12864-12881	4.4	17
237	Overestimated climate warming and climate variability due to spatially homogeneous CO in climate modeling over the Northern Hemisphere since the mid-19 century. <i>Scientific Reports</i> , 2019 , 9, 17426	4.9	5
236	Quantifying the contributions of various emission sources to black carbon and assessment of control strategies in western China. <i>Atmospheric Research</i> , 2019 , 215, 178-192	5.4	9
235	DISO: A rethink of Taylor diagram. <i>International Journal of Climatology</i> , 2019 , 39, 2825-2832	3.5	18
234	Decadal Transition of the Leading Mode of Interannual Moisture Circulation over East Asia Western North Pacific: Bonding to Different Evolution of ENSO. <i>Journal of Climate</i> , 2019 , 32, 289-3	0 8 ·4	12
233	Moisture Source Changes Contributed to Different Precipitation Changes over the Northern and Southern Tibetan Plateau. <i>Journal of Hydrometeorology</i> , 2019 , 20, 217-229	3.7	39
232	How does temporal trend of reference evapotranspiration over the Tibetan Plateau change with elevation?. <i>International Journal of Climatology</i> , 2019 , 39, 2295-2305	3.5	9

(2018-2019)

231	Recent Third Poles Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. <i>Bulletin of the American Meteorological Society</i> , 2019 , 100, 423-44	6.1 14	253
230	An interdecadal climate dipole between Northeast Asia and Antarctica over the past five centuries. <i>Climate Dynamics</i> , 2019 , 52, 765-775	4.2	1
229	Recent trends in wind speed across Saudi Arabia, 1978\(\mathbb{D}\)013: a break in the stilling. <i>International Journal of Climatology</i> , 2018 , 38, e966-e984	3.5	32
228	Improved Land Use and Leaf Area Index Enhances WRF-3DVAR Satellite Radiance Assimilation: A Case Study Focusing on Rainfall Simulation in the Shule River Basin during July 2013. <i>Advances in Atmospheric Sciences</i> , 2018 , 35, 628-644	2.9	6
227	Impact of model resolution on simulating the water vapor transport through the central Himalayas: implication for models wet bias over the Tibetan Plateau. <i>Climate Dynamics</i> , 2018 , 51, 3195-3207	4.2	59
226	Evaluating anemometer drift: A statistical approach to correct biases in wind speed measurement. <i>Atmospheric Research</i> , 2018 , 203, 175-188	5.4	27
225	Synchronous multi-decadal climate variability of the whole Pacific areas revealed in tree rings since 1567. <i>Environmental Research Letters</i> , 2018 , 13, 024016	6.2	9
224	Keeping global warming within 1.5 LC constrains emergence of aridification. <i>Nature Climate Change</i> , 2018 , 8, 70-74	21.4	96
223	Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: a review. <i>International Journal of Climatology</i> , 2018 , 38, e1-e17	3.5	80
222	Temporal and spatial changes in estimated near-surface air temperature lapse rates on Tibetan Plateau. <i>International Journal of Climatology</i> , 2018 , 38, 2907-2921	3.5	24
221	Weakening Relationship Between Vegetation Growth Over the Tibetan Plateau and Large-Scale Climate Variability. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2018 , 123, 1247-1259	3.7	16
220	Time-varying relationships among oceanic and atmospheric modes: A turning point at around 1940. <i>Quaternary International</i> , 2018 , 487, 12-25	2	5
219	Wind speed variability over the Canary Islands, 1948\(\mathbb{Q}\)014: focusing on trend differences at the land\(\mathbb{D}\)cean interface and below\(\mathbb{B}\)bove the trade-wind inversion layer. Climate Dynamics, 2018, 50, 4061-4	1081	16
218	Comparison between past and future extreme precipitations simulated by global and regional climate models over the Tibetan Plateau. <i>International Journal of Climatology</i> , 2018 , 38, 1285-1297	3.5	22
217	Potential effects of changes in climate and emissions on distribution and fate of perfluorooctane sulfonate in the Bohai Rim, China. <i>Science of the Total Environment</i> , 2018 , 613-614, 352-360	10.2	12
216	Global Freshwater Availability Below Normal Conditions and Population Impact Under 1.5 and 2IIC Stabilization Scenarios. <i>Geophysical Research Letters</i> , 2018 , 45, 9803-9813	4.9	21
215	Dependency of tropical cyclone risk on track in South Korea. <i>Natural Hazards and Earth System Sciences</i> , 2018 , 18, 3225-3234	3.9	8
214	Evaluation of three global gridded precipitation data sets in central Asia based on rain gauge observations. <i>International Journal of Climatology</i> , 2018 , 38, 3475-3493	3.5	55

Evaluation of circulation-type classifications with respect to temperature and precipitation 213 variations in the central and eastern Tibetan Plateau. *International Journal of Climatology*, **2018**, 38, 4938²4949⁷ Assessing reliability of precipitation data over the Mekong River Basin: A comparison of 212 39 ground-based, satellite, and reanalysis datasets. *International Journal of Climatology*, **2018**, 38, 4314-4334⁵ Modeling the Origin of Anthropogenic Black Carbon and Its Climatic Effect Over the Tibetan 211 49 Plateau and Surrounding Regions. Journal of Geophysical Research D: Atmospheres, 2018, 123, 671-692 How Do Tropical, Northern Hemispheric, and Southern Hemispheric Volcanic Eruptions Affect 210 11 4.9 ENSO Under Different Initial Ocean Conditions?. Geophysical Research Letters, 2018, 45, 13,041 Evaluations and Improvements of GLDAS2.0 and GLDAS2.1 Forcing Data's Applicability for Basin Scale Hydrological Simulations in the Tibetan Plateau. Journal of Geophysical Research D: 209 4.4 21 Atmospheres, 2018, 123, 13,128 Global and regional climate responses to national-committed emission reductions under the Paris 208 1.1 12 agreement. Geografiska Annaler, Series A: Physical Geography, 2018, 100, 240-253 Evaluation of global climate models for downscaling applications centred over the Tibetan Plateau. 28 207 3.5 International Journal of Climatology, 2017, 37, 657-671 Drought variation of western Chinese Loess Plateau since 1568 and its linkages with droughts in 206 4.2 14 western North America. Climate Dynamics, 2017, 49, 3839-3850 Evaluation of Precipitable Water Vapor from Four Satellite Products and Four Reanalysis Datasets 205 4.4 47 against GPS Measurements on the Southern Tibetan Plateau. Journal of Climate, 2017, 30, 5699-5713 Does summer precipitation trend over and around the Tibetan Plateau depend on elevation?. 204 3.5 34 International Journal of Climatology, 2017, 37, 1278-1284 Urbanization and air quality as major drivers of altered spatiotemporal patterns of heavy rainfall in 203 21 4.3 China. Landscape Ecology, 2017, 32, 1723-1738 Recent enhancement of central Pacific El Ni variability relative to last eight centuries. Nature 202 82 17.4 Communications, **2017**, 8, 15386 Analysing the variability and trends of precipitation extremes in Finland and their connection to 201 3.5 19 atmospheric circulation patterns. International Journal of Climatology, 2017, 37, 1053-1066 Changes of effective temperature and cold/hot days in late decades over China based on a high 200 63 3.5 resolution gridded observation dataset. International Journal of Climatology, 2017, 37, 788-800 Extensive and drastically different alpine lake changes on Asia's high plateaus during the past four 199 4.9 141 decades. Geophysical Research Letters, 2017, 44, 252-260 Long-term variability and trends in annual snowfall/total precipitation ratio in Finland and the role 198 3.8 17 of atmospheric circulation patterns. Cold Regions Science and Technology, 2017, 143, 23-31 Development of a land surface model with coupled snow and frozen soil physics. Water Resources 197 5.4 45 Research, 2017, 53, 5085-5103 Quantification of the relative role of land-surface processes and large-scale forcing in dynamic 196 47 downscaling over the Tibetan Plateau. Climate Dynamics, 2017, 48, 1705-1721

(2016-2017)

195	Can tree-ring density data reflect summer temperature extremes and associated circulation patterns over Fennoscandia?. <i>Climate Dynamics</i> , 2017 , 49, 2721-2736	4.2	4
194	The relationship between birch pollen, air pollution and weather types and their effect on antihistamine purchase in two Swedish cities. <i>Aerobiologia</i> , 2017 , 33, 457-471	2.4	24
193	Recent Changes in the Moisture Source of Precipitation over the Tibetan Plateau. <i>Journal of Climate</i> , 2017 , 30, 1807-1819	4.4	97
192	Tracing changes in atmospheric moisture supply to the drying Southwest China. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 10383-10393	6.8	26
191	An Improved figstrfh-Type Model for Estimating Solar Radiation over the Tibetan Plateau. <i>Energies</i> , 2017 , 10, 892	3.1	5
190	Climate, intrinsic water-use efficiency and tree growth over the past 150 years in humid subtropical China. <i>PLoS ONE</i> , 2017 , 12, e0172045	3.7	15
189	Earlier occurrence and increased explanatory power of climate for the first incidence of potato late blight caused by Phytophthora infestans in Fennoscandia. <i>PLoS ONE</i> , 2017 , 12, e0177580	3.7	16
188	Hydroclimate variability in Scandinavia over the last millennium [Insights from a climate model[Froxy data comparison. <i>Climate of the Past</i> , 2017 , 13, 1831-1850	3.9	18
187	Modeling of Regional Climate over the Tibetan Plateau 2017 ,		4
186	The role of atmospheric circulation patterns in agroclimate variability in finland, 1961 2 011. <i>Geografiska Annaler, Series A: Physical Geography</i> , 2016 , 98, 287-301	1.1	6
185	Homogenization and Assessment of Observed Near-Surface Wind Speed Trends across Sweden, 1956 2 013. <i>Journal of Climate</i> , 2016 , 29, 7397-7415	4.4	38
184	Trends in extreme precipitation indices across China detected using quantile regression. <i>Atmospheric Science Letters</i> , 2016 , 17, 400-406	2.4	27
183	Quantitative Estimation of the Climatic Effects of Carbon Transferred by International Trade. <i>Scientific Reports</i> , 2016 , 6, 28046	4.9	1
182	Trends of daily peak wind gusts in Spain and Portugal, 1961\(\mathbb{Q}\)014. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 1059-1078	4.4	59
181	Effects of climate change on heating and cooling degree days and potential energy demand in the household sector of China. <i>Climate Research</i> , 2016 , 67, 135-149	1.6	29
180	Century-long variability and trends in daily precipitation characteristics at three Finnish stations. <i>Advances in Climate Change Research</i> , 2016 , 7, 54-69	4.1	19
179	Validation of the global land data assimilation system based on measurements of soil temperature profiles. <i>Agricultural and Forest Meteorology</i> , 2016 , 218-219, 288-297	5.8	17
178	Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. <i>Global and Planetary Change</i> , 2016 , 136, 82-95	4.2	120

177	A method to assess the inter-annual weather-dependent variability in air pollution concentration and deposition based on weather typing. <i>Atmospheric Environment</i> , 2016 , 126, 200-210	5.3	16
176	Large-scale circulation classification and its links to observed precipitation in the eastern and central Tibetan Plateau. <i>Climate Dynamics</i> , 2016 , 46, 3481-3497	4.2	43
175	Climate change in the North China Plain: smallholder farmer perceptions and adaptations in Quzhou County, Hebei Province. <i>Climate Research</i> , 2016 , 69, 261-273	1.6	9
174	1200 years of warm-season temperature variability in central Scandinavia inferred from tree-ring density. <i>Climate of the Past</i> , 2016 , 12, 1297-1312	3.9	26
173	Satellite measurements reveal strong anisotropy in spatial coherence of climate variations over the Tibet Plateau. <i>Scientific Reports</i> , 2016 , 6, 30304	4.9	12
172	Estimating continental river basin discharges using multiple remote sensing data sets. <i>Remote Sensing of Environment</i> , 2016 , 179, 36-53	13.2	82
171	Comparing global precipitation data sets in eastern Africa: a case study of Kilombero Valley, Tanzania. <i>International Journal of Climatology</i> , 2016 , 36, 2000-2014	3.5	66
170	A multi-state weather generator for daily precipitation for the Torne River basin, northern Sweden/western Finland. <i>Advances in Climate Change Research</i> , 2016 , 7, 70-81	4.1	9
169	Improving snow process modeling with satellite-based estimation of near-surface-air-temperature lapse rate. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 12,005-12,030	4.4	26
168	Changes in the relationship between solar radiation and sunshine duration in large cities of China. <i>Energy</i> , 2015 , 82, 589-600	7.9	22
167	Evaporative cooling over the Tibetan Plateau induced by vegetation growth. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 9299-304	11.5	270
166	Interdecadal hydroclimate teleconnections between Asia and North America over the past 600 years. <i>Climate Dynamics</i> , 2015 , 44, 1777-1787	4.2	11
165	Variability in dryness and wetness in central Finland and the role of teleconnection patterns. <i>Theoretical and Applied Climatology</i> , 2015 , 122, 471-486	3	30
164	Long-range transport of air pollutants originating in China: A possible major cause of multi-day high-PM10 episodes during cold season in Seoul, Korea. <i>Atmospheric Environment</i> , 2015 , 109, 23-30	5.3	99
163	Aridity changes in the Tibetan Plateau in a warming climate. <i>Environmental Research Letters</i> , 2015 , 10, 034013	6.2	87
162	Projecting future local precipitation and its extremes for sweden. <i>Geografiska Annaler, Series A:</i> Physical Geography, 2015 , 97, 25-39	1.1	13
161	Assessment of urban effect on observed warming trends during 1955\(\mathbb{Q}\)012 over China: a case of 45 cities. Climatic Change, 2015, 132, 631-643	4.5	22
160	Variation and co-variation of PM10, particle number concentration, NOx and NO2 in the urban air Relationships with wind speed, vertical temperature gradient and weather type. <i>Atmospheric Environment</i> , 2015 , 120, 317-327	5.3	51

(2014-2015)

159	How similar are annual and summer temperature variability in central Sweden?. <i>Advances in Climate Change Research</i> , 2015 , 6, 159-170	4.1	1
158	The time aspect of bioenergy Elimate impacts of solid biofuels due to carbon dynamics. <i>GCB Bioenergy</i> , 2015 , 7, 785-796	5.6	23
157	Impacts of wind stilling on solar radiation variability in China. Scientific Reports, 2015, 5, 15135	4.9	45
156	Influence of atmospheric circulation patterns on urban air quality during the winter. <i>Atmospheric Pollution Research</i> , 2015 , 6, 278-285	4.5	25
155	Comparison between two statistical downscaling methods for summer daily rainfall in Chongqing, China. <i>International Journal of Climatology</i> , 2015 , 35, 3781-3797	3.5	10
154	Interannual variations and trends in surface air temperature in Finland in relation to atmospheric circulation patterns, 1961 2 011. <i>International Journal of Climatology</i> , 2015 , 35, 3078-3092	3.5	30
153	AVHRR warm-season cloud climatologies under various synoptic regimes across the Iberian Peninsula and the Balearic Islands. <i>International Journal of Climatology</i> , 2015 , 35, 1984-2002	3.5	4
152	The Arctic and Polar cells act on the Arctic sea ice variation. <i>Tellus, Series A: Dynamic Meteorology and Oceanography</i> , 2015 , 67, 27692	2	12
151	On using principal components to represent stations in empirical statistical downscaling. <i>Tellus, Series A: Dynamic Meteorology and Oceanography,</i> 2015 , 67, 28326	2	16
150	Projecting streamflow in the Tangwang River basin (China) using a rainfall generator and two hydrological models. <i>Climate Research</i> , 2015 , 62, 79-97	1.6	11
149	European Trend Atlas of Extreme Temperature and Precipitation Records 2015,		7
148	Evaluation of WRF Mesoscale Climate Simulations over the Tibetan Plateau during 19792011. Journal of Climate, 2015 , 28, 2823-2841	4.4	125
147	Changes in winter cold surges over Southeast China: 1961 to 2012. <i>Asia-Pacific Journal of Atmospheric Sciences</i> , 2015 , 51, 29-37	2.1	13
146	Influences of large- and regional-scale climate on fish recruitment in the SkagerrakKattegat over the last century. <i>Journal of Marine Systems</i> , 2014 , 134, 1-11	2.7	3
145	Covarying Hydroclimate Patterns between Monsoonal Asia and North America over the Past 600 Years. <i>Journal of Climate</i> , 2014 , 27, 8017-8033	4.4	9
144	Seasonal evapotranspiration changes (1983\(\mathbb{Q}\)006) of four large basins on the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,079-13,095	4.4	49
143	Intensified Arctic warming under greenhouse warming by vegetation at the state of t	6.2	24
142	Summer High Temperature Extremes in Southeast China: Bonding with the El Ni Bouthern Oscillation and East Asian Summer Monsoon Coupled System. <i>Journal of Climate</i> , 2014 , 27, 4122-4138	4.4	53

141	Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. <i>Geoscientific Model Development</i> , 2014 , 7, 2039-2064	6.3	180
140	Water Vapor Transport and Moisture Budget over Eastern China: Remote Forcing from the Two Types of El Ni B . <i>Journal of Climate</i> , 2014 , 27, 8778-8792	4.4	43
139	Statistical downscaling of summer temperature extremes in northern China. <i>Advances in Atmospheric Sciences</i> , 2013 , 30, 1085-1095	2.9	28
138	Asia: proving ground for global sustainability. <i>Current Opinion in Environmental Sustainability</i> , 2013 , 5, 288-292	7.2	13
137	Using the Kppen classification to quantify climate variation and change: An example for 1901 2010. <i>Environmental Development</i> , 2013 , 6, 69-79	4.1	294
136	Evaluation of the warm season diurnal cycle of precipitation over Sweden simulated by the Rossby Centre regional climate model RCA3. <i>Atmospheric Research</i> , 2013 , 119, 131-139	5.4	35
135	Near-surface air temperature lapse rates in the mainland China during 1962 2 011. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 7505-7515	4.4	72
134	Evaluation of evapotranspiration estimates for two river basins on the Tibetan Plateau by a water balance method. <i>Journal of Hydrology</i> , 2013 , 492, 290-297	6	91
133	Evaluation of the Global Climate Models in the CMIP5 over the Tibetan Plateau. <i>Journal of Climate</i> , 2013 , 26, 3187-3208	4.4	295
132	A robust mode of climate variability in the Arctic: The Barents Oscillation. <i>Geophysical Research Letters</i> , 2013 , 40, 2856-2861	4.9	17
131	Evaluation of global climate models in simulating extreme precipitation in China. <i>Tellus, Series A: Dynamic Meteorology and Oceanography</i> , 2013 , 65, 19799	2	51
130	Impacts of Snow Initialization on Subseasonal Forecasts of Surface Air Temperature for the Cold Season. <i>Journal of Climate</i> , 2013 , 26, 1956-1972	4.4	54
129	Observation and calculation of the solar radiation on the Tibetan Plateau. <i>Energy Conversion and Management</i> , 2012 , 57, 23-32	10.6	48
128	Variation in ozone exposure in the landscape of southern Sweden with consideration of topography and coastal climate. <i>Atmospheric Environment</i> , 2012 , 47, 252-260	5.3	13
127	Droughts near the northern fringe of the East Asian summer monsoon in China during 1470\(\textbf{Q}\)003. Climatic Change, 2012 , 110, 373-383	4.5	37
126	Characterising and visualizing spatio-temporal patterns in hourly precipitation records. <i>Theoretical and Applied Climatology</i> , 2012 , 109, 333-343	3	4
125	Greening in the circumpolar high-latitude may amplify warming in the growing season. <i>Climate Dynamics</i> , 2012 , 38, 1421-1431	4.2	29
124	Spatial and temporal characteristics of actual evapotranspiration over Haihe River basin in China. Stochastic Environmental Research and Risk Assessment, 2012 , 26, 655-669	3.5	58

123	Interannual teleconnections between the summer North Atlantic Oscillation and the East Asian summer monsoon. <i>Journal of Geophysical Research</i> , 2011 , 116,		80	
122	Recent recovery of the Siberian High intensity. <i>Journal of Geophysical Research</i> , 2011 , 116, n/a-n/a		74	
121	Diurnal cycle of precipitation amount and frequency in Sweden: observation versus model simulation. <i>Tellus, Series A: Dynamic Meteorology and Oceanography</i> , 2011 , 63, 664-674	2	26	
120	Development of selection algorithms and databases for sea breeze studies. <i>Theoretical and Applied Climatology</i> , 2011 , 106, 531-546	3	29	
119	Diurnal variations of summer precipitation in the Beijing area and the possible effect of topography and urbanization. <i>Advances in Atmospheric Sciences</i> , 2011 , 28, 725-734	2.9	40	
118	Development of a downscaling method in China regional summer precipitation prediction. <i>Journal of Meteorological Research</i> , 2011 , 25, 303-315		5	
117	Long-term trend of temperature derived by statistical downscaling based on EOF analysis. <i>Journal of Meteorological Research</i> , 2011 , 25, 327-339		12	
116	The influence of large-scale circulation on the summer hydrological cycle in the Haihe River basin of China. <i>Journal of Meteorological Research</i> , 2011 , 25, 517-526		2	
115	Long-term precipitation change by hourly data in Haihe River Basin during 1961 2 004. <i>Science China Earth Sciences</i> , 2011 , 54, 1576-1585	4.6	8	
114	A multi-year study of sea breezes in a Mediterranean coastal site: Alicante (Spain). <i>International Journal of Climatology</i> , 2011 , 31, 468-486	3.5	51	
113	Reconstruction of river runoff to the Baltic Sea, AD 15001995. <i>International Journal of Climatology</i> , 2011 , 31, 696-703	3.5	37	
112	Impact of urban warming on earlier spring flowering in Korea. <i>International Journal of Climatology</i> , 2011 , 31, 1488-1497	3.5	21	
111	Extreme rainfall events in southern Sweden: where does the moisture come from?. <i>Tellus, Series A: Dynamic Meteorology and Oceanography</i> , 2010 , 62, 605-616	2	58	
110	Environment and development. Earth system science for global sustainability: grand challenges. <i>Science</i> , 2010 , 330, 916-7	33.3	382	
109	An Earth-System Prediction Initiative for the Twenty-First Century. <i>Bulletin of the American Meteorological Society</i> , 2010 , 91, 1377-1388	6.1	71	
108	Spatial interpolation of daily precipitation in China: 1951\(\bar{\pi}\)005. <i>Advances in Atmospheric Sciences</i> , 2010 , 27, 1221-1232	2.9	80	
107	The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day climate. <i>Climate Dynamics</i> , 2010 , 34, 123-147	4.2	224	
106	Precipitation data in a mountainous catchment in Honduras: quality assessment and spatiotemporal characteristics. <i>Theoretical and Applied Climatology</i> , 2010 , 101, 381-396	3	35	

105	Impacts of boundary layer turbulence and land surface process parameterizations on simulated sea breeze characteristics. <i>Annales Geophysicae</i> , 2009 , 27, 2303-2320	2	20
104	Urban aerosol evolution and particle formation during wintertime temperature inversions. <i>Atmospheric Environment</i> , 2009 , 43, 340-346	5.3	42
103	Diurnal variations of precipitation during the warm season over China. <i>International Journal of Climatology</i> , 2009 , 29, 1154-1170	3.5	59
102	Trends of the thermal growing season in China, 1951\(\mathbb{Q}\)007. <i>International Journal of Climatology</i> , 2009 , 30, n/a-n/a	3.5	25
101	ChiWIB road weather index for China. International Journal of Climatology, 2009, 29, 2337-2347	3.5	1
100	A climatological study of the influence of synoptic-scale flows on sea breeze evolution in the Bay of Alicante (Spain). <i>Theoretical and Applied Climatology</i> , 2009 , 96, 249-260	3	45
99	Statistical downscaling of daily precipitation over Sweden using GCM output. <i>Theoretical and Applied Climatology</i> , 2009 , 96, 95-103	3	55
98	The dual-beam mini-DOAS techniquetheasurements of volcanic gas emission, plume height and plume speed with a single instrument. <i>Bulletin of Volcanology</i> , 2009 , 71, 747-751	2.4	35
97	Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings. <i>Science in China Series D: Earth Sciences</i> , 2009 , 52, 348-359		194
96	Temperature variations recorded in Pinus tabulaeformis tree rings from the southern and northern slopes of the central Qinling Mountains, central China. <i>Boreas</i> , 2009 , 38, 285-291	2.4	82
95	Synoptic weather types and long-range transport patterns for ozone precursors during high-ozone events in southern Sweden. <i>Ambio</i> , 2009 , 38, 459-64	6.5	12
94	Heavy pollution suppresses light rain in China: Observations and modeling. <i>Journal of Geophysical Research</i> , 2009 , 114,		219
93	Asian emissions in 2006 for the NASA INTEX-B mission. Atmospheric Chemistry and Physics, 2009 , 9, 5131-	&8 53	1699
92	State of the Climate in 2008. Bulletin of the American Meteorological Society, 2009 , 90, S1-S196	6.1	57
91	Central Scandinavian winter precipitation variability during the past five centuries reconstructed from Pinus sylvestris tree rings. <i>Boreas</i> , 2008 , 34, 43-52	2.4	5
90	Spectral analysis of weekly variation in PM10 mass concentration and meteorological conditions over China. <i>Atmospheric Environment</i> , 2008 , 42, 655-666	5.3	59
89	Quantification of total emission of air pollutants from Beijing using mobile mini-DOAS. <i>Atmospheric Environment</i> , 2008 , 42, 6926-6933	5.3	43
88	Modelling precipitation in Sweden using multiple step markov chains and a composite model. Journal of Hydrology, 2008 , 363, 42-59	6	39

87	Past and Current Climate Change 2008 , 35-131		16
86	Projections of Future Anthropogenic Climate Change 2008 , 133-219		7
85	Land Surface Initialization Using an Offline CLM3 Simulation with the GSWP-2 Forcing Dataset and Its Impact on CAM3 Simulations of the Boreal Summer Climate*. <i>Journal of Hydrometeorology</i> , 2008 , 9, 1231-1248	3.7	8
84	Anticyclonic atmospheric circulation as an analogue for the warm and dry mid-Holocene summer climate in central Scandinavia. <i>Climate of the Past</i> , 2008 , 4, 215-224	3.9	29
83	Twentieth-century trends in the thermal growing season in the Greater Baltic Area. <i>Climatic Change</i> , 2008 , 87, 405-419	4.5	80
82	Trends in graded precipitation in China from 1961 to 2000. <i>Advances in Atmospheric Sciences</i> , 2008 , 25, 267-278	2.9	47
81	Evaluation of MM5 mesoscale model at local scale for air quality applications over the Swedish west coast: Influence of PBL and LSM parameterizations. <i>Meteorology and Atmospheric Physics</i> , 2008 , 99, 77-103	2	25
80	Empirical-Statistical Downscaling 2008,		177
79	Trend of estimated actual evapotranspiration over China during 1960\(\mathbb{Q}\)002. <i>Journal of Geophysical Research</i> , 2007 , 112,		164
78	Weekly cycle of aerosol-meteorology interaction over China. <i>Journal of Geophysical Research</i> , 2007 , 112,		90
77	Relation between vegetation changes, climate variables and land-use policy in shaanxi province, china. <i>Geografiska Annaler, Series A: Physical Geography</i> , 2007 , 89, 223-236	1.1	14
76	A high-resolution, gridded dataset for monthly temperature normals (1971-2000) in sweden. <i>Geografiska Annaler, Series A: Physical Geography</i> , 2007 , 89, 249-261	1.1	10
75	A high-resolution reconstruction of Storglacifen mass balance back to 1780/81 using tree-ring data and circulation indices. <i>Quaternary Research</i> , 2007 , 67, 12-20	1.9	16
74	Evaluation and Comparison of Noah and PleimRiu Land Surface Models in MM5 Using GIIE2001 Data: Spatial and Temporal Variations in Near-Surface Air Temperature. <i>Journal of Applied Meteorology and Climatology</i> , 2007 , 46, 1587-1605	2.7	40
73	Increasing risk for negative ozone impacts on vegetation in northern Sweden. <i>Environmental Pollution</i> , 2007 , 150, 96-106	9.3	29
72	Simulated long-term effects of different soil management regimes on the water balance in the Loess Plateau, China. <i>Field Crops Research</i> , 2007 , 100, 311-319	5.5	36
71	Using statistical downscaling to quantify the GCM-related uncertainty in regional climate change scenarios: A case study of Swedish precipitation. <i>Advances in Atmospheric Sciences</i> , 2006 , 23, 54-60	2.9	38
70	Decreasing reference evapotranspiration in a warming climatella case of Changjiang (Yangtze) River catchment during 1970 2000. <i>Advances in Atmospheric Sciences</i> , 2006 , 23, 513-520	2.9	53

69	Spatial and temporal variations and controlling factors of potential evapotranspiration in China: 1956\(\bar{2}\) 000. <i>Journal of Chinese Geography</i> , 2006 , 16, 3-12	3.7	123
68	Modelling subgrid scale dry deposition velocity of O3 over the Swedish west coast with MM5-PX model. <i>Atmospheric Environment</i> , 2006 , 40, 415-429	5.3	16
67	The surface winds of Sweden during 1999\(\textbf{Q}\)000. International Journal of Climatology, 2006 , 26, 159-178	3.5	24
66	State of the Climate in 2005. Bulletin of the American Meteorological Society, 2006 , 87, s1-s102	6.1	30
65	Daily precipitation-downscaling techniques in three Chinese regions. <i>Water Resources Research</i> , 2006 , 42,	5.4	83
64	Stratospheric origin of cold surge occurrence in East Asia. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	45
63	Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901\(\textbf{0}000. \) Journal of Geophysical Research, 2006 , 111,		293
62	Variation of tropical cyclone activity in the South Indian Ocean: El NiBBouthern Oscillation and Madden-Julian Oscillation effects. <i>Journal of Geophysical Research</i> , 2006 , 111,		83
61	Land-use change: Impacts of climate variations and policies among small-scale farmers in the Loess Plateau, China. <i>Land Use Policy</i> , 2006 , 23, 361-371	5.6	73
60	Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. <i>Journal of Hydrology</i> , 2006 , 327, 81-93	6	425
59	Sensitivity of the Penman Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. <i>Journal of Hydrology</i> , 2006 , 329, 620-629	6	300
58	Large increase in heavy rainfall associated with tropical cyclone landfalls in Korea after the late 1970s. <i>Geophysical Research Letters</i> , 2006 , 33, n/a-n/a	4.9	70
57	Influence of climate on winter wheat productivity in different climate regions of China, 1961?2000. <i>Climate Research</i> , 2006 , 32, 219-227	1.6	18
56	The use of a calculus-based cyclone identification method for generating storm statistics. <i>Tellus, Series A: Dynamic Meteorology and Oceanography,</i> 2006 , 58, 473-486	2	23
55	Statistical downscaling of climate scenarios over Scandinavia. Climate Research, 2005, 29, 255-268	1.6	135
54	Comparison of the Thornthwaite method and pan data with the standard Penman-Monteith estimates of reference evapotranspiration in China. <i>Climate Research</i> , 2005 , 28, 123-132	1.6	182
53	Impacts of different emission sources on air quality during March 2001 in the Pearl River Delta (PRD) region. <i>Atmospheric Environment</i> , 2005 , 39, 5227-5241	5.3	96
52	Comparison of seven models for estimation of evapotranspiration and groundwater recharge using lysimeter measurement data in Germany. <i>Hydrological Processes</i> , 2005 , 19, 3717-3734	3.3	143

(2001-2005)

51	Climate-induced variability of sea level in Stockholm: Influence of air temperature and atmospheric circulation. <i>Advances in Atmospheric Sciences</i> , 2005 , 22, 655-664	2.9	23
50	Climate Variability and Land-use Change in Danangou Watershed, China E xamples of Small-Scale Farmers' Adaptation. <i>Climatic Change</i> , 2005 , 72, 189-212	4.5	68
49	Central Scandinavian winter precipitation variability during the past five centuries reconstructed from Pinus sylvestris tree rings. <i>Boreas</i> , 2005 , 34, 43-52	2.4	25
48	Estimation of areal precipitation for runoff modelling using wind data: a case study in Sweden. <i>Climate Research</i> , 2005 , 29, 53-61	1.6	26
47	Statistical downscaling and scenario construction of precipitation in Scania, southern Sweden 2004 , 35, 261-278		29
46	Stochastic modeling of daily precipitation in China. <i>Journal of Chinese Geography</i> , 2004 , 14, 417-426	3.7	26
45	Scale-dependent relationship between maximum ice extent in the Baltic Sea and atmospheric circulation. <i>Global and Planetary Change</i> , 2004 , 41, 275-283	4.2	20
44	Attenuation of biologically effective UV doses under overcast skies: a case study from the eastern Atlantic sector of the Southern Ocean. <i>Deep-Sea Research Part II: Topical Studies in Oceanography</i> , 2004 , 51, 2673-2682	2.3	6
43	Comparison of the impact of regional and North Atlantic atmospheric circulation on an aquatic ecosystem. <i>Climate Research</i> , 2003 , 23, 131-136	1.6	30
42	Statistical downscaling based on dynamically downscaled predictors: Application to monthly precipitation in Sweden. <i>Advances in Atmospheric Sciences</i> , 2003 , 20, 951-958	2.9	26
41	Temporal and spatial variability of dryness/wetness in China during the last 530 years. <i>Theoretical and Applied Climatology</i> , 2003 , 76, 13-29	3	30
40	Performance of the Rossby Centre regional atmospheric model in Southern Sweden: comparison of simulated and observed precipitation. <i>Theoretical and Applied Climatology</i> , 2003 , 76, 219-234	3	21
39	The influence of wind and topography on precipitation distribution in Sweden: statistical analysis and modelling. <i>International Journal of Climatology</i> , 2003 , 23, 1523-1535	3.5	135
38	Association between winter temperature in China and upper air circulation over East Asia revealed by canonical correlation analysis. <i>Global and Planetary Change</i> , 2003 ,	4.2	6
37	. Tellus, Series A: Dynamic Meteorology and Oceanography, 2002, 51, 505-516	2	23
36	Statistical parameters derived from ozonesonde data of importance for passive remote sensing observations of ozone. <i>International Journal of Remote Sensing</i> , 2002 , 23, 4945-4963	3.1	10
35	. Tellus, Series A: Dynamic Meteorology and Oceanography, 2001 , 53, 348-367	2	46
34	Performance of statistical downscaling models in GCM validation and regional climate change estimates: application for Swedish precipitation. <i>International Journal of Climatology</i> , 2001 , 21, 557-578	3 3.5	88

33	Influence of atmospheric circulation on the maximum ice extent in the Baltic Sea. <i>Journal of Geophysical Research</i> , 2001 , 106, 4493-4500		75
32	Temporal and spatial variability of precipitation in Sweden and its link with the large-scale atmospheric circulation. <i>Tellus, Series A: Dynamic Meteorology and Oceanography</i> , 2001 , 53, 348-367	2	29
31	Comparison of climate change scenarios for Sweden based on statistical and dynamical downscaling of monthly precipitation. <i>Climate Research</i> , 2001 , 19, 45-55	1.6	88
30	A monthly circulation climatology for Sweden and its application to a winter temperature case study. <i>International Journal of Climatology</i> , 2000 , 20, 1067-1076	3.5	116
29	A monthly circulation climatology for Sweden and its application to a winter temperature case study 2000 , 20, 1067		2
28	The influence of the North Atlantic Oscillation on the regional temperature variability in Sweden: spatial and temporal variations. <i>Tellus, Series A: Dynamic Meteorology and Oceanography</i> , 1999 , 51, 505-	5 ² 16	101
27	The applicability of similarity theory to a road surface. <i>Meteorological Applications</i> , 1999 , 6, 81-88	2.1	9
26	Air and soil frost indices in relation to plant mortality in elevated clear-felled terrain in Central Sweden. <i>Climate Research</i> , 1999 , 12, 65-75	1.6	14
25	Influence of geographical factors and meteorological variables on nocturnal urban-park temperature differences-a case study of summer 1995 in GEeborg, Sweden. <i>Climate Research</i> , 1999 , 13, 125-139	1.6	48
24	A method for finding sea breeze days under stable synoptic conditions and its application to the Swedish west coast. <i>International Journal of Climatology</i> , 1998 , 18, 901-914	3.5	72
23	Temporal and spatial variability of total ozone in Southwest Sweden revealed by two ground-based instruments. <i>International Journal of Climatology</i> , 1998 , 18, 1237-1246	3.5	14
22	A comparative analysis of nebkhas in central Tunisia and northern Burkina Faso. <i>Geomorphology</i> , 1998 , 22, 181-192	4.3	68
21	El NiBBouthern Oscillation and North Atlantic Oscillation Control of Climate in Puerto Rico. Journal of Climate, 1998 , 11, 2713-2717	4.4	59
20	A method for finding sea breeze days under stable synoptic conditions and its application to the Swedish west coast 1998 , 18, 901		1
19	Sensitivity of the thermohaline circulation in coupled oceanic GCM Latmospheric EBM experiments. <i>Climate Dynamics</i> , 1996 , 12, 403-416	4.2	16
18	APPARENT THERMAL DIFFUSIVITY IN SOIL: ESTIMATION FROM THERMAL RECORDS AND SUGGESTIONS FOR NUMERICAL MODELING. <i>Physical Geography</i> , 1996 , 17, 419-430	1.8	16
17	. Tellus, Series A: Dynamic Meteorology and Oceanography, 1996 , 48, 465-476	2	3
16	Stability of the thermohaline circulation in a simple coupled model. <i>Tellus, Series A: Dynamic Meteorology and Oceanography</i> , 1996 , 48, 465-476	2	6

LIST OF PUBLICATIONS

15	Sensitivity of the thermohaline circulation in coupled oceanic GCM Latmospheric EBM experiments 1996 , 12, 403		7	
14	A 1-D atmospheric energy balance model developed for ocean modelling. <i>Theoretical and Applied Climatology</i> , 1995 , 51, 25-38	3	10	
13	A residual circulation derived from an energy balance climate model. <i>Journal of Geophysical Research</i> , 1995 , 100, 21137		0	
12	CPSDv0: a forest stand structure database for plantation forests in China. <i>Big Earth Data</i> ,1-19	4.1		
11	Pacific multidecadal (50៧០lyear) variability instigated by volcanic forcing during the Little Ice Age (1250៧850). <i>Climate Dynamics</i> ,1	4.2	2	
10	Future precipitation changes in three key sub-regions of East Asia: the roles of thermodynamics and dynamics. <i>Climate Dynamics</i> ,1	4.2	O	
9	Spatial variation of modelled and measured NO, NO ₂ and O ₃ concentrations in the polluted urban landscape Irelation to meteorology during the GEe-2005 campaign		3	
8	Simulating the effects of mid- to upper-tropospheric clouds on microwave emissions in EC-Earth using COSP		1	
7	1200 years of warm-season temperature variability in central Fennoscandia inferred from tree-ring de	nsity	10	
6	Anticyclonic atmospheric circulation as an analogue for the warm and dry mid-Holocene summer climate in central Scandinavia		2	
5	Ten new insights in climate science 2021 🖟 horizon scan. Global Sustainability,1-39	5.4	6	
4	Spatial correlations of daily precipitation over mainland China. International Journal of Climatology,	3.5	3	
3	Wind stilling-reversal across Sweden: The impact of land-use and large-scale atmospheric circulation changes. <i>International Journal of Climatology</i> ,	3.5	1	
2	Current understanding of groundwater recharge and groundwater drought in Sweden compared to countries with similar geology and climate. <i>Geografiska Annaler, Series A: Physical Geography</i> ,1-23	1.1	2	
1	Extreme precipitation variability across the Lancang-Mekong River Basin during 1952\(\bar{\textsf{0}}\)015 in relation to teleconnections and summer monsoons. <i>International Journal of Climatology</i> ,	3.5	2	