MarÃ-a de la Luz Zambrano-Zaragoza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7318074/publications.pdf Version: 2024-02-01

516561 454834 37 955 16 30 g-index citations h-index papers 37 37 37 1156 docs citations times ranked citing authors all docs

MarÃa de la Luz

#	Article	IF	CITATIONS
1	Nanosystems in Edible Coatings: A Novel Strategy for Food Preservation. International Journal of Molecular Sciences, 2018, 19, 705.	1.8	179
2	The effect of nano-coatings with α-tocopherol and xanthan gum on shelf-life and browning index of fresh-cut "Red Delicious―apples. Innovative Food Science and Emerging Technologies, 2014, 22, 188-196.	2.7	100
3	Approaches in Polymeric Nanoparticles for Vaginal Drug Delivery: A Review of the State of the Art. International Journal of Molecular Sciences, 2018, 19, 1549.	1.8	70
4	Use of solid lipid nanoparticles (SLNs) in edible coatings to increase guava (Psidium guajava L.) shelf-life. Food Research International, 2013, 51, 946-953.	2.9	69
5	Fresh-cut Red Delicious apples coating using tocopherol/mucilage nanoemulsion: Effect of coating on polyphenol oxidase and pectin methylesterase activities. Food Research International, 2014, 62, 974-983.	2.9	62
6	Controlled-release biodegradable nanoparticles: From preparation to vaginal applications. European Journal of Pharmaceutical Sciences, 2018, 115, 185-195.	1.9	51
7	Physicochemical, total phenols and pectin methylesterase changes on quality maintenance on guava fruit (Psidium guajava L.) coated with candeuba wax solid lipid nanoparticles-xanthan gum. Food Research International, 2017, 101, 218-227.	2.9	49
8	The release kinetics of β-carotene nanocapsules/xanthan gum coating and quality changes in fresh-cut melon (cantaloupe). Carbohydrate Polymers, 2017, 157, 1874-1882.	5.1	39
9	The Effects of Tocopherol Nanocapsules/Xanthan Gum Coatings on the Preservation of Fresh-Cut Apples: Evaluation of Phenol Metabolism. Food and Bioprocess Technology, 2015, 8, 1791-1799.	2.6	38
10	Encapsulation of bioactive peptides: a strategy to improve the stability, protect the nutraceutical bioactivity and support their food applications. RSC Advances, 2022, 12, 6449-6458.	1.7	33
11	Effect of Nano-Edible Coating Based on Beeswax Solid Lipid Nanoparticles on Strawberry's Preservation. Coatings, 2020, 10, 253.	1.2	31
12	Impact of the Emulsification-Diffusion Method on the Development of Pharmaceutical Nanoparticles. Recent Patents on Drug Delivery and Formulation, 2012, 6, 184-194.	2.1	26
13	The Functionalization of Nanostructures and Their Potential Applications in Edible Coatings. Coatings, 2018, 8, 160.	1.2	23
14	Optimization of the emulsification-diffusion method using ultrasound to prepare nanocapsules of different food-core oils. LWT - Food Science and Technology, 2018, 87, 333-341.	2.5	20
15	The Evaluation of Mechanical, Thermal, Optical and Microstructural Properties of Edible Films with Solid Lipid Nanoparticles-Xanthan Gum Stored at Different Temperatures and Relative Humidities. Food and Bioprocess Technology, 2016, 9, 1756-1768.	2.6	18
16	Effect of sucrose concentration and pH onto the physical stability of β-carotene nanocapsules. LWT - Food Science and Technology, 2018, 90, 354-361.	2.5	17
17	Design and Evaluation of pH-Dependent Nanosystems Based on Cellulose Acetate Phthalate, Nanoparticles Loaded with Chlorhexidine for Periodontal Treatment. Pharmaceutics, 2019, 11, 604.	2.0	16
18	Physicochemical, morphological, and pasting properties of nixtamalized flours from quality protein maize and its particle distribution. LWT - Food Science and Technology, 2013, 53, 81-87.	2.5	14

MARÃA DE LA LUZ

#	Article	IF	CITATIONS
19	Spray-drying method for the encapsulation of a functionalized ingredient in alginate-pectin nano- and microparticles loaded with distinct natural actives: Stability and antioxidant effect. Food Hydrocolloids, 2020, 101, 105560.	5.6	14
20	Evaluation of the lubricating effect of magnesium stearate and glyceryl behenate solid lipid nanoparticles in a direct compression process. International Journal of Pharmaceutics, 2018, 545, 170-175.	2.6	10
21	Influence of Stabilizing and Encapsulating Polymers on Antioxidant Capacity, Stability, and Kinetic Release of Thyme Essential Oil Nanocapsules. Foods, 2020, 9, 1884.	1.9	9
22	Implementation of the emulsification-diffusion method by solvent displacement for polystyrene nanoparticles prepared from recycled material. RSC Advances, 2021, 11, 2226-2234.	1.7	9
23	Effects of UV-C and Edible Nano-Coating as a Combined Strategy to Preserve Fresh-Cut Cucumber. Polymers, 2021, 13, 3705.	2.0	9
24	The mass transport phenomenon through pericarp during the nixtamalization process. Food and Bioproducts Processing, 2016, 100, 477-486.	1.8	8
25	Preparation of nanodispersions by solvent displacement using the Venturi tube. International Journal of Pharmaceutics, 2018, 545, 254-260.	2.6	7
26	Poly(acrylic acid)-grafted hydrophobic weak acid gels as mucoadhesives for controlled drug release. Radiation Physics and Chemistry, 2019, 164, 108372.	1.4	6
27	Development and Characterization of pH-Dependent Cellulose Acetate Phthalate Nanofibers by Electrospinning Technique. Nanomaterials, 2021, 11, 3202.	1.9	6
28	Synthesis, Controlled Release, and Stability on Storage of Chitosan-Thyme Essential Oil Nanocapsules for Food Applications. Gels, 2021, 7, 212.	2.1	4
29	Effects of extrusion process in snacks of oats–nixtamalized corn pericarp mixtures on dietary fiber content and functional properties. CYTA - Journal of Food, 2013, 11, 38-45.	0.9	3
30	Polymeric Nanoparticles in Foods. Nanotechnology in the Life Sciences, 2019, , 217-233.	0.4	3
31	Physicochemical characterization of flours and rheological and textural changes of masa and tortillas obtained from maize fertilized with nejayote and ovine manure. International Agrophysics, 2020, 34, 241-252.	0.7	3
32	Zinc nanomaterials: A safe tool for postharvest disease management. , 2021, , 243-265.		2
33	Preparation of Co-Processed Excipients for Controlled-Release of Drugs Assembled with Solid Lipid Nanoparticles and Direct Compression Materials. Molecules, 2021, 26, 2093.	1.7	2
34	Nano-Films for Food Packaging. Food Engineering Series, 2020, , 287-307.	0.3	2
35	Cuantificación de Cobre en Polifenoloxidasa de Frutas Tropicales por EspectrofotometrÃa de Absorción Atómica. Informacion Tecnologica (discontinued), 2011, 22, 15-22.	0.1	1
36	Novel Techniques for Extrusion, Agglomeration, Encapsulation, Gelation, and Coating of Foods. , 2019,		1

3

#	Article	IF	CITATIONS
37	Solid lipid nanoparticles by Venturi tube: preparation, characterization and optimization by Box–Behnken design. Drug Development and Industrial Pharmacy, 2021, 47, 1302-1309.	0.9	1