Ka-Hing Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7317627/publications.pdf

Version: 2024-02-01

172386 197736 2,602 63 29 49 citations h-index g-index papers 67 67 67 3124 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Alginate and its Two Components Acted Differently Against Dopaminergic Neuronal Loss in Parkinson's Disease Mice Model. Molecular Nutrition and Food Research, 2022, 66, e2100739.	1.5	5
2	Polymannuronic acid prebiotic plus Lacticaseibacillus rhamnosus GG probiotic as a novel synbiotic promoted their separate neuroprotection against Parkinson's disease. Food Research International, 2022, 155, 111067.	2.9	24
3	Isolation, Structural Properties, and Bioactivities of Polysaccharides from Mushrooms <i>Termitomyces</i> : A Review. Journal of Agricultural and Food Chemistry, 2022, 70, 21-33.	2.4	14
4	Selenium Nanoparticles (SeNPs) Immunomodulation Is More Than Redox Improvement: Serum Proteomics and Transcriptomic Analyses. Antioxidants, 2022, 11, 964.	2.2	13
5	Revealing the species-specific genotype of the edible bird's nest-producing swiftlet, Aerodramus fuciphagus and the proteome of edible bird's nest. Food Research International, 2022, 160, 111670.	2.9	4
6	Mass spectrometry-based untargeted metabolomics approach for differentiation of beef of different geographic origins. Food Chemistry, 2021, 338, 127847.	4.2	37
7	Colonic Dopaminergic Neurons Changed Reversely With Those in the Midbrain via Gut Microbiota-Mediated Autophagy in a Chronic Parkinson's Disease Mice Model. Frontiers in Aging Neuroscience, 2021, 13, 649627.	1.7	10
8	Predicting Antituberculosis Drug–Induced Liver Injury Using an Interpretable Machine Learning Method: Model Development and Validation Study. JMIR Medical Informatics, 2021, 9, e29226.	1.3	8
9	An Investigation of the Risk Factors Associated With Anti-Tuberculosis Drug-Induced Liver Injury or Abnormal Liver Functioning in 757 Patients With Pulmonary Tuberculosis. Frontiers in Pharmacology, 2021, 12, 708522.	1.6	13
10	Polymannuronic acid prevents dopaminergic neuronal loss via brain-gut-microbiota axis in Parkinson's disease model. International Journal of Biological Macromolecules, 2020, 164, 994-1005.	3.6	34
11	Use of random forest analysis to quantify the importance of the structural characteristics of beta-glucans for prebiotic development. Food Hydrocolloids, 2020, 108, 106001.	5.6	14
12	Systematic acute and subchronic toxicity evaluation of polysaccharide–protein complex-functionalized selenium nanoparticles with anticancer potency. Biomaterials Science, 2019, 7, 5112-5123.	2.6	33
13	Dietary chitosan-selenium nanoparticle (CTS-SeNP) enhance immunity and disease resistance in zebrafish. Fish and Shellfish Immunology, 2019, 87, 449-459.	1.6	42
14	Potentiation of in Vivo Anticancer Efficacy of Selenium Nanoparticles by Mushroom Polysaccharides Surface Decoration. Journal of Agricultural and Food Chemistry, 2019, 67, 2865-2876.	2.4	67
15	Improving quality of teaching and learning in classes by using augmented reality video. Computers and Education, 2019, 128, 88-101.	5.1	113
16	Maternal dietary exposure to selenium nanoparticle led to malformation in offspring. Ecotoxicology and Environmental Safety, 2018, 156, 34-40.	2.9	12
17	Photothermalâ€Controlled Nanotubes with Surface Charge Flipping Ability for Precise Synergistic Therapy of Tripleâ€Negative Breast Cancer. Advanced Functional Materials, 2018, 28, 1805225.	7.8	46
18	Cancer Therapy: Photothermal-Controlled Nanotubes with Surface Charge Flipping Ability for Precise Synergistic Therapy of Triple-Negative Breast Cancer (Adv. Funct. Mater. 45/2018). Advanced Functional Materials, 2018, 28, 1870325.	7.8	2

#	Article	IF	CITATIONS
19	Zein-Paclitaxel Prodrug Nanoparticles for Redox-Triggered Drug Delivery and Enhanced Therapeutic Efficiency. Journal of Agricultural and Food Chemistry, 2018, 66, 11812-11822.	2.4	15
20	Autophagy is an important action mode for functionalized selenium nanoparticles to exhibit anti-colorectal cancer activity. Biomaterials Science, 2018, 6, 2508-2517.	2.6	61
21	Polysaccharide-protein complex-decorated selenium nanosystem as an efficient bone-formation therapeutic. Journal of Materials Chemistry B, 2018, 6, 5215-5219.	2.9	22
22	A hyperbranched \hat{l}^2 -d-glucan with compact coil conformation from Lignosus rhinocerotis sclerotia. Food Chemistry, 2017, 225, 267-275.	4.2	29
23	Anticancer and anti-angiogenic activities of extract from Actinidia eriantha Benth root. Journal of Ethnopharmacology, 2017, 203, 1-10.	2.0	21
24	Structure, molecular conformation, and immunomodulatory activity of four polysaccharide fractions from Lignosus rhinocerotis sclerotia. International Journal of Biological Macromolecules, 2017, 94, 423-430.	3.6	59
25	Novel nanoparticle materials for drug/food delivery-polysaccharides. ChemistrySelect, 2016, 1, .	0.7	5
26	8. Novel nanoparticle materials for drug/food delivery-polysaccharides. , 2016, , 159-190.		0
27	Identification of peptides released from hot water insoluble fraction of edible bird's nest under simulated gastro-intestinal conditions. Food Research International, 2016, 85, 19-25.	2.9	19
28	Facile synthesis of highly uniform selenium nanoparticles using glucose as the reductant and surface decorator to induce cancer cell apoptosis. Journal of Materials Chemistry B, 2016, 4, 2351-2358.	2.9	95
29	An integrin-targeting nanosystem as a carrier of the selenadiazole derivative to induce ROS-mediated apoptosis in bladder cancer cells, from rational design to action mechanisms. Journal of Materials Chemistry B, 2015, 3, 9374-9382.	2.9	9
30	Preparation, characterization and <i>in vitro</i> release of zein-pectin capsules for target delivery. Current Drug Delivery, 2015, 12, 397-405.	0.8	22
31	Purification and in vitro antioxidant activities of tellurium-containing phycobiliproteins from tellurium-enriched Spirulina platensis. Drug Design, Development and Therapy, 2014, 8, 1789.	2.0	13
32	Investigation of antifungal and antibacterial effects of fabric padded with highly stable selenium nanoparticles. Journal of Applied Polymer Science, 2014, 131, .	1.3	54
33	Ruthenium polypyridyl complexes as inducer of ROS-mediated apoptosis in cancer cells by targeting thioredoxin reductase. Metallomics, 2014, 6, 1480-1490.	1.0	85
34	Synergistic Induction of Apoptosis by Methylseleninic Acid and Cisplatin, The Role of ROS-ERK/AKT-p53 Pathway. Molecular Pharmaceutics, 2014, 11, 1282-1293.	2.3	40
35	Chemical composition, antimicrobial activity against Staphylococcus aureus and a pro-apoptotic effect in SGC-7901 of the essential oil from Toona sinensis (A. Juss.) Roem. leaves. Journal of Ethnopharmacology, 2014, 154, 198-205.	2.0	40
36	Induction of Apoptosis and Cell Cycle Arrest in A549 Human Lung Adenocarcinoma Cells by Surface-Capping Selenium Nanoparticles: An Effect Enhanced by Polysaccharide–Protein Complexes from Polyporus rhinocerus. Journal of Agricultural and Food Chemistry, 2013, 61, 9859-9866.	2.4	113

3

#	Article	IF	Citations
37	Gold-mediated bifunctional modification of oligosaccharidesvia a three-component coupling reaction. Organic and Biomolecular Chemistry, 2012, 10, 925-930.	1.5	44
38	Surface decoration of selenium nanoparticles by mushroom polysaccharides–protein complexes to achieve enhanced cellular uptake and antiproliferative activity. Journal of Materials Chemistry, 2012, 22, 9602.	6.7	143
39	Multifunctional bioconjugation by Morita–Baylis–Hillman reaction in aqueous medium. Chemical Communications, 2012, 48, 3527.	2.2	21
40	Purification of selenium-containing allophycocyanin from selenium-enriched Spirulina platensis and its hepatoprotective effect against t-BOOH-induced apoptosis. Food Chemistry, 2012, 134, 253-261.	4.2	27
41	A comparative study on antioxidant activity of ten different parts of Nelumbo nucifera Gaertn African Journal of Pharmacy and Pharmacology, 2011, 5, .	0.2	5
42	In vitro antioxidant activities of endophytic fungi isolated from the liverwort Scapania verrucosa. Genetics and Molecular Research, 2011, 10, 3169-3179.	0.3	25
43	Immunomodulatory activities of mushroom sclerotial polysaccharides. Food Hydrocolloids, 2011, 25, 150-158.	5.6	129
44	Hot Water Extract of the Sclerotium of Polyporus rhinocerus Cooke Enhances the Immune Functions of Murine Macrophages. International Journal of Medicinal Mushrooms, 2011, 13, 237-244.	0.9	21
45	Enzymatic preparation of mushroom dietary fibre: A comparison between analytical and industrial enzymes. Food Chemistry, 2009, 115, 795-800.	4.2	11
46	Stimulation of Human Innate Immune Cells by Medicinal Mushroom Sclerotial Polysaccharides. International Journal of Medicinal Mushrooms, 2009, 11, 215-223.	0.9	21
47	Antiproliferative Effects of Sclerotial Polysaccharides from Polyporus rhinocerus Cooke (Aphyllophoromycetideae) on Different Kinds of Leukemic Cells. International Journal of Medicinal Mushrooms, 2008, 10, 255-264.	0.9	54
48	Sclerotium of Culinary-Medicinal King Tuber Oyster Mushroom, Pleurotus tuberregium (Fr.) Singer (Agaricomycetideae): Its Cultivation, Biochemical Composition, and Biopharmacological Effects (Review). International Journal of Medicinal Mushrooms, 2008, 10, 303-313.	0.9	17
49	Dietary Fibers from Mushroom Sclerotia. 4. In Vivo Mineral Absorption Using Ovariectomized Rat Model. Journal of Agricultural and Food Chemistry, 2006, 54, 1921-1927.	2.4	14
50	Dietary Fibers from Mushroom Sclerotia: \hat{A} 1. Preparation and Physicochemical and Functional Properties. Journal of Agricultural and Food Chemistry, 2005, 53, 9395-9400.	2.4	42
51	Dietary Fibers from Mushroom Sclerotia:Â 2. In Vitro Mineral Binding Capacity under Sequential Simulated Physiological Conditions of the Human Gastrointestinal Tract. Journal of Agricultural and Food Chemistry, 2005, 53, 9401-9406.	2.4	15
52	Dietary Fibers from Mushroom Sclerotia:Â 3. In Vitro Fermentability Using Human Fecal Microflora. Journal of Agricultural and Food Chemistry, 2005, 53, 9407-9412.	2.4	34
53	Nutritional evaluation of protein concentrates isolated from two red seaweeds: Hypnea charoides and Hypnea japonica in growing rats. Hydrobiologia, 2004, 512, 271-278.	1.0	12
54	Studies on submerged fermentation of Pleurotus tuber-regium (Fr.) Singer. Part 2: effect of carbon-to-nitrogen ratio of the culture medium on the content and composition of the mycelial dietary fibre. Food Chemistry, 2004, 85, 101-105.	4.2	33

#	Article	IF	CITATIONS
55	Studies on submerged fermentation of Pleurotus tuber-regium (Fr.) Singerâ€"Part 1: physical and chemical factors affecting the rate of mycelial growth and bioconversion efficiency. Food Chemistry, 2003, 81, 389-393.	4.2	36
56	Biochemical and Microstructural Characteristics of Insoluble and Soluble Dietary Fiber Prepared from Mushroom Sclerotia ofPleurotus tuber-regium,Polyporus rhinocerus, andWolfiporia cocos. Journal of Agricultural and Food Chemistry, 2003, 51, 7197-7202.	2.4	37
57	Effect of fiber-rich brown seaweeds on protein bioavailability of casein in growing rats. International Journal of Food Sciences and Nutrition, 2003, 54, 269-279.	1.3	16
58	Nutritional evaluation of some subtropical red and green seaweeds Part II. In vitro protein digestibility and amino acid profiles of protein concentrates. Food Chemistry, 2001, 72, 11-17.	4.2	127
59	Influence of drying treatment on three Sargassum species. Journal of Applied Phycology, 2001, 13, 43-50.	1.5	68
60	Title is missing!. Journal of Applied Phycology, 2001, 13, 51-58.	1.5	60
61	Nutritional evaluation of some subtropical red and green seaweeds. Food Chemistry, 2000, 71, 475-482.	4.2	334
62	Changes in lipid profiles of rats fed with seaweed-based diets. Nutrition Research, 1999, 19, 1519-1527.	1.3	45
63	Nutritional assessment of three Chinese indigenous legumes in growing rats. Nutrition Research, 1998, 18, 1573-1580.	1.3	9