Joël Puibasset

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7317542/publications.pdf

Version: 2024-02-01

331670 330143 1,402 66 21 37 citations h-index g-index papers 66 66 66 2716 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Final Analysis and Results of the Phase II SIMPLE Dark Matter Search. Physical Review Letters, 2012, 108, 201302.	7.8	228
2	Water adsorption on hydrophilic mesoporous and plane silica substrates: A grand canonical Monte Carlo simulation study. Journal of Chemical Physics, 2003, 118, 5613-5622.	3.0	97
3	Grand Canonical Monte Carlo Simulation Study of Water Adsorption in Silicalite at 300 K. Journal of Physical Chemistry B, 2008, 112, 6390-6397.	2.6	83
4	Water adsorption in disordered mesoporous silica (Vycor) at 300K and 650K: A Grand Canonical Monte Carlo simulation study of hysteresis. Journal of Chemical Physics, 2005, 122, 094704.	3.0	82
5	Grand canonical Monte Carlo simulation study of water structure on hydrophilic mesoporous and plane silica substrates. Journal of Chemical Physics, 2003, 119, 9226-9232.	3.0	65
6	First Results of the Phase II SIMPLE Dark Matter Search. Physical Review Letters, 2010, 105, 211301.	7.8	62
7	SIMPLE dark matter search results. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 621, 233-238.	4.1	55
8	First Dark Matter Limits from a Large-Mass, Low-Background, Superheated Droplet Detector. Physical Review Letters, 2000, 85, 3083-3086.	7.8	49
9	Monte-Carlo Multiscale Simulation Study of Argon Adsorption/Desorption Hysteresis in Mesoporous Heterogeneous Tubular Pores like MCM-41 or Oxidized Porous Silicon. Langmuir, 2009, 25, 903-911.	3.5	46
10	The SIMPLE Phase II dark matter search. Physical Review D, 2014, 89, .	4.7	45
11	Adsorptionâ [*] desorption hysteresis of simple fluids confined in realistic heterogeneous silica mesopores of micrometric length: A new analysis exploiting a multiscale Monte Carlo approach. Journal of Chemical Physics, 2007, 127, 154701.	3.0	40
12	Grand Potential, Helmholtz Free Energy, and Entropy Calculation in Heterogeneous Cylindrical Pores by the Grand Canonical Monte Carlo Simulation Method. Journal of Physical Chemistry B, 2005, 109, 480-487.	2.6	39
13	Adsorption-induced strain of a nanoscale silicon honeycomb. Europhysics Letters, 2015, 109, 56002.	2.0	39
14	A comparison of water adsorption on ordered and disordered silica substrates. Physical Chemistry Chemical Physics, 2004, 6, 1933-1937.	2.8	33
15	Prospects for SIMPLE 2000: a large-mass, low-background superheated droplet detector for WIMP searches. New Journal of Physics, 2000, 2, 14-14.	2.9	31
16	Phase coexistence in heterogeneous porous media: A new extension to Gibbs ensemble Monte Carlo simulation method. Journal of Chemical Physics, 2005, 122, 134710.	3.0	26
17	Capillary Condensation in a Geometrically and a Chemically Heterogeneous Pore:Â A Molecular Simulation Study. Journal of Physical Chemistry B, 2005, 109, 4700-4706.	2.6	24
18	Molecular simulations of water in hydrophobic microporous solids. Adsorption, 2008, 14, 733-742.	3.0	24

#	Article	IF	CITATIONS
19	Influence of surface chemical heterogeneities on adsorption/desorption hysteresis and coexistence diagram of metastable states within cylindrical pores. Journal of Chemical Physics, 2006, 125, 074707.	3.0	23
20	A grand canonical Monte Carlo simulation study of water adsorption on Vycor-like hydrophilic mesoporous silica at different temperatures. Journal of Physics Condensed Matter, 2004, 16, S5329-S5343.	1.8	22
21	Influence of reservoir size on the adsorption path in an ideal pore. Journal of Chemical Physics, 2009, 131, 124123.	3.0	21
22	On the Thermodynamics and Experimental Control of Twinning in Metal Nanocrystals. Angewandte Chemie - International Edition, 2017, 56, 8647-8651.	13.8	21
23	Thermodynamic Characterization of Fluids Confined in Heterogeneous Pores by Monte Carlo Simulations in the Grand Canonical and the Isobaricâ°lsothermal Ensembles. Journal of Physical Chemistry B, 2005, 109, 8185-8194.	2.6	20
24	Bridge function for the dipolar fluid from simulation. Journal of Chemical Physics, 2012, 136, 154503.	3.0	19
25	Influence of the Silica Support on the Structure and the Morphology of Silver Nanoparticles: A Molecular Simulation Study. Journal of Physical Chemistry C, 2016, 120, 8323-8332.	3.1	16
26	Freezing and Melting of Silver Nanoparticles on Silica Substrate Using a Simple Interatomic Potential for Ag–SiO ₂ Interaction on the Basis of ⟨i⟩ab Initio <td>3.1</td> <td>15</td>	3.1	15
27	Confinement effect on thermodynamic and structural properties of water in hydrophilic mesoporous silica. European Physical Journal E, 2003, 12, 67-70.	1.6	14
28	Effect of the reservoir size on gas adsorption in inhomogeneous porous media. Journal of Physics Condensed Matter, 2009, 21, 155102.	1.8	14
29	Counting metastable states within the adsorption/desorption hysteresis loop: A molecular simulation study of confinement in heterogeneous pores. Journal of Chemical Physics, 2010, 133, 104701.	3.0	14
30	Fabrication and response of high concentration SIMPLE superheated droplet detectors with different liquids. Astroparticle Physics, 2013, 49, 28-43.	4.3	13
31	Density Functional Theory Study of the Spontaneous Formation of Covalent Bonds at the Silver/Silica Interface in Silver Nanoparticles Embedded in SiO ₂ : Implications for Ag ⁺ Release. ACS Applied Nano Materials, 2019, 2, 5179-5189.	5.0	13
32	Water confined in mesoporous silica glasses: Influence of temperature on adsorption/desorption hysteresis loop and fluid structure. European Physical Journal: Special Topics, 2007, 141, 41-44.	2.6	12
33	Effect of pore morphology and topology on capillary condensation in nanopores: a theoretical and molecular simulation study. Studies in Surface Science and Catalysis, 2007, 160, 1-8.	1.5	11
34	Structure and Permeability of Porous Silicon Investigated by Self-Diffusion NMR Measurements of Ethanol and Heptane. Oil and Gas Science and Technology, 2016, 71, 54.	1.4	8
35	Surface excess free energy of simple fluids confined in cylindrical pores by isothermal-isobaric Monte Carlo: Influence of pore size. Journal of Chemical Physics, 2007, 126, 184701.	3.0	7
36	Pseudocritical or hysteresis temperature versus pore size for simple fluids confined in cylindrical nanopores. Journal of Chemical Physics, 2008, 129, 024705.	3.0	6

#	Article	IF	CITATIONS
37	Fluid adsorption in linear pores: a molecular simulation study of the influence of heterogeneities on the hysteresis loop and the distribution of metastable states. Molecular Simulation, 2014, 40, 690-697.	2.0	6
38	On the Thermodynamics and Experimental Control of Twinning in Metal Nanocrystals. Angewandte Chemie, 2017, 129, 8773-8777.	2.0	6
39	Generalized isobaric–isothermal ensemble: application to capillary condensation and cavitation in heterogeneous nanopores. Molecular Physics, 2006, 104, 3021-3032.	1.7	5
40	Influence of system size on the properties of a fluid adsorbed in a nanopore: Physical manifestations and methodological consequences. Journal of Chemical Physics, 2014, 141, 044716.	3.0	5
41	Adsorption-Induced Deformation of a Nanoporous Material: Influence of the Fluid–Adsorbent Interaction and Surface Freezing on the Pore-Load Modulus Measurement. Journal of Physical Chemistry C, 2017, 121, 18779-18788.	3.1	5
42	Finite-size corrections in simulation of dipolar fluids. Journal of Chemical Physics, 2017, 147, 224110.	3.0	5
43	Numerical characterization of the density of metastable states within the hysteresis loop in disordered systems. Journal of Physics Condensed Matter, 2011, 23, 035106.	1.8	4
44	Prospects for a Phase III SIMPLE Measurement. Journal of Physics: Conference Series, 2012, 375, 012017.	0.4	4
45	RECENT RESULTS FROM THE SIMPLE DARK MATTER SEARCH. , 2005, , .		3
46	Influence of temperature on water adsorption / desorption hysteresis loop in disordered mesoporous silica glass by Grand Canonical Monte Carlo simulation method. Studies in Surface Science and Catalysis, 2007, , 535-541.	1.5	3
47	Improving Molecular Simulation Models of Adsorption in Porous Materials: Interdependence between Domains. Oil and Gas Science and Technology, 2013, 68, 309-318.	1.4	3
48	Cavitation in heterogeneous nanopores: The chemical ink-bottle. AIP Advances, 2021, 11, .	1.3	3
49	SIMPLE limits on spin-dependent WIMP interactions. Journal of Physics: Conference Series, 2006, 39, 114-116.	0.4	2
50	The simple SDD. Radiation Protection Dosimetry, 2006, 120, 503-508.	0.8	2
51	Stability intervals of metastable states in hysteretic systems. Physical Review E, 2011, 84, 061126.	2.1	2
52	Molecular simulation study of the heat capacity of metastable water between 100 and 300â€K. Molecular Simulation, 2019, 45, 462-465.	2.0	2
53	Thermodynamic pressure of simple fluids confined in cylindrical nanopores by isothermal-isobaric Monte Carlo: Influence of fluid/substrate interactions. Journal of Chemical Physics, 2007, 127, 074702.	3.0	1
54	Elastic Compliance and Stiffness Matrix of the FCC Lennard-Jones Thin Films: Influence of Thickness and Temperature. Journal of Physical Chemistry C, 2019, 123, 15027-15037.	3.1	1

#	Article	IF	CITATIONS
55	Vapor–Liquid Equilibrium. , 2010, , 213-240.		1
56	The Status of SIMPLE-2000. , 2001, , 598-603.		1
57	Silica-induced electron loss of silver nanoparticles. Nanoscale, 2022, 14, 7280-7291.	5.6	1
58	A grand canonical Monte Carlo simulation study of water adsorption in a Vycor-like disordered mesoporous material at 300K Studies in Surface Science and Catalysis, 2002, , 371-378.	1.5	0
59	Phase transitions in porous materials: influence of physico-chemical heterogeneities. MATEC Web of Conferences, 2013, 3, 01083.	0.2	0
60	The simple dark matter search: Present and future. E3S Web of Conferences, 2014, 4, 03002.	0.5	0
61	A SIMPLE bubble chamber for dark matter searches: Testing and development. , 2015, , .		0
62	Adsorption-Induced Deformation in Nanopores: Unexpected Results Obtained by Molecular Simulations. , 2017, , .		0
63	Bulk supercooled water <i>versus</i> adsorbed films on silica surfaces: specific heat by Monte Carlo simulation. Physical Chemistry Chemical Physics, 2021, 23, 2275-2285.	2.8	0
64	WIMP SEARCHES WITH SUPERHEATED DROPLET DETECTORS: STATUS AND PROSPECTS. , 2001, , .		0
65	The Status of SIMPLE in 2002. , 2002, , 524-528.		0
66	New extension of the Gibbs ensemble Monte Carlo simulation method: analysis of phase coexistence of simple fluids adsorbed in heterogeneous pores. European Journal of Control, 2005, 30, 401-410.	2.6	0