
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7317420/publications.pdf Version: 2024-02-01

ADDIANA CASAS

#	Article	IF	CITATIONS
1	Hydrogen sulfide decreases photodynamic therapy outcome through the modulation of the cellular redox state. Nitric Oxide - Biology and Chemistry, 2022, 125-126, 57-68.	1.2	2
2	Photodynamic therapy of tumour cells mediated by the natural anthraquinone parietin and blue light. Journal of Photochemistry and Photobiology B: Biology, 2021, 214, 112089.	1.7	13
3	Synthesis and cytotoxicity evaluation of olivacine-indole hybrids tethered by alkyl linkers. Natural Product Research, 2021, , 1-8.	1.0	0
4	Apoptotic cell death induced by dendritic derivatives of aminolevulinic acid in endothelial and foam cells co-cultures. Photochemical and Photobiological Sciences, 2021, 20, 489-499.	1.6	1
5	Novel meso-substituted porphyrin derivatives and its potential use in photodynamic therapy of cancer. BMC Cancer, 2021, 21, 547.	1.1	12
6	Photodynamic therapy of cutaneous T-cell lymphoma cell lines mediated by 5-aminolevulinic acid and derivatives. Journal of Photochemistry and Photobiology B: Biology, 2021, 221, 112244.	1.7	8
7	Photosensitization of a subcutaneous tumour by the natural anthraquinone parietin and blue light. Scientific Reports, 2021, 11, 23820.	1.6	5
8	Fluorescent redox-dependent labeling of lipid droplets in cultured cells by reduced phenazine methosulfate. Heliyon, 2020, 6, e04182.	1.4	6
9	Photodynamic inactivation mediated by 5-aminolevulinic acid of bacteria in planktonic and biofilm forms. Biochemical Pharmacology, 2020, 177, 114016.	2.0	17
10	Clinical uses of 5-aminolaevulinic acid in photodynamic treatment and photodetection of cancer: A review. Cancer Letters, 2020, 490, 165-173.	3.2	88
11	Bacterial viability after antimicrobial photodynamic therapy with curcumin on multiresistant <i>Staphylococcus aureus</i> . Future Microbiology, 2019, 14, 739-748.	1.0	25
12	Disaccharides obtained from carrageenans as potential antitumor agents. Scientific Reports, 2019, 9, 6654.	1.6	53
13	One-step preparation of novel 1-(N-indolyl)-1,3-butadienes by base-catalysed isomerization of alkynes as an access to 5-(N-indolyl)-naphthoquinones. RSC Advances, 2018, 8, 35998-36006.	1.7	1
14	Enhancement of photodynamic inactivation of Staphylococcus aureus biofilms by disruptive strategies. Lasers in Medical Science, 2017, 32, 1757-1767.	1.0	2
15	Synthesis and cytotoxicity evaluation of A-ring derivatives of cycloartanone. Phytochemistry Letters, 2017, 21, 200-205.	0.6	3
16	Reversal of the Migratory and Invasive Phenotype of Ras-Transfected Mammary Cells by Photodynamic Therapy Treatment. Journal of Cellular Biochemistry, 2017, 118, 464-477.	1.2	6
17	Synthesis of chemically diverse esters of 5-aminolevulinic acid for photodynamic therapy via the multicomponent Passerini reaction. RSC Advances, 2016, 6, 89492-89498.	1.7	5
18	Sae regulator factor impairs the response to photodynamic inactivation mediated by Toluidine blue in Staphylococcus aureus. Photodiagnosis and Photodynamic Therapy, 2016, 16, 136-141.	1.3	14

#	Article	IF	CITATIONS
19	Photodynamic inactivation of planktonic and biofilm growing bacteria mediated by a meso-substituted porphyrin bearing four basic amino groups. Journal of Photochemistry and Photobiology B: Biology, 2016, 161, 222-229.	1.7	33
20	Methods for the detection of reactive oxygen species employed in the identification of plant photosensitizers. Methods, 2016, 109, 73-80.	1.9	9
21	The role of cytoskeleton and adhesion proteins in the resistance to photodynamic therapy. Possible therapeutic interventions. Photochemical and Photobiological Sciences, 2015, 14, 1451-1464.	1.6	16
22	Aminolevulinic acid dendrimers in photodynamic treatment of cancer and atheromatous disease. Photochemical and Photobiological Sciences, 2015, 14, 1617-1627.	1.6	29
23	The Use of Dipeptide Derivatives of 5-Aminolaevulinic Acid Promotes Their Entry to Tumor Cells and Improves Tumor Selectivity of Photodynamic Therapy. Molecular Cancer Therapeutics, 2015, 14, 440-451.	1.9	15
24	Mechanisms of Resistance to Photodynamic Therapy: An Update. Resistance To Targeted Anti-cancer Therapeutics, 2015, , 29-63.	0.1	10
25	Photoprotective Effect of the Plant <i>Collaea argentina</i> against Adverse Effects Induced by Photodynamic Therapy. International Journal of Photoenergy, 2014, 2014, 1-8.	1.4	1
26	Photodynamic inactivation of Gram-positive bacteria employing natural resources. Journal of Photochemistry and Photobiology B: Biology, 2014, 133, 80-89.	1.7	21
27	The natural flavonoid silybin improves the response to Photodynamic Therapy of bladder cancer cells. Journal of Photochemistry and Photobiology B: Biology, 2014, 133, 55-64.	1.7	36
28	Light fractionated ALA-PDT enhances therapeutic efficacy in vitro; the influence of PpIX concentration and illumination parameters. Photochemical and Photobiological Sciences, 2013, 12, 241-245.	1.6	27
29	Changes in actin and E-cadherin expression induced by 5-aminolevulinic acid photodynamic therapy in normal and Ras-transfected human mammary cell lines. Journal of Photochemistry and Photobiology B: Biology, 2012, 106, 47-52.	1.7	11
30	Mechanisms of Resistance to Photodynamic Therapy. Current Medicinal Chemistry, 2011, 18, 2486-2515.	1.2	251
31	Sustained and efficient porphyrin generation in vivo using dendrimer conjugates of 5-ALA for photodynamic therapy. Journal of Controlled Release, 2009, 135, 136-143.	4.8	62
32	Comparation of liposomal formulations of ALA Undecanoyl ester for its use in photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2009, 96, 152-158.	1.7	17
33	Porphyrin synthesis from aminolevulinic acid esters in endothelial cells and its role in photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2009, 96, 249-254.	1.7	34
34	Preclinical photodynamic therapy research in Spain 4: Cytoskeleton and adhesion complexes of cultured tumor cells as targets of photosensitizers. Journal of Porphyrins and Phthalocyanines, 2009, 13, 552-559.	0.4	2
35	Characterisation of liposomes containing aminolevulinic acid and derived esters. Journal of Photochemistry and Photobiology B: Biology, 2008, 92, 1-9.	1.7	44
36	Disorganisation of cytoskeleton in cells resistant to photodynamic treatment with decreased metastatic phenotype. Cancer Letters, 2008, 270, 56-65.	3.2	37

#	Article	IF	CITATIONS
37	Decreased metastatic phenotype in cells resistant to aminolevulinic acid-photodynamic therapy. Cancer Letters, 2008, 271, 342-351.	3.2	32
38	Macromolecular delivery of 5-aminolaevulinic acid for photodynamic therapy using dendrimer conjugates. Molecular Cancer Therapeutics, 2007, 6, 876-885.	1.9	101
39	Response to ALA-based PDT in an immortalised normal breast cell line and its counterpart transformed with the Ras oncogene. Photochemical and Photobiological Sciences, 2007, 6, 1306.	1.6	16
40	Photodynamic therapy in Argentina. Photodiagnosis and Photodynamic Therapy, 2006, 3, 205-213.	1.3	2
41	Investigation of a novel dendritic derivative of 5-aminolaevulinic acid for photodynamic therapy. International Journal of Biochemistry and Cell Biology, 2006, 38, 82-91.	1.2	48
42	Study of the mechanisms of uptake of 5-aminolevulinic acid derivatives by PEPT1 and PEPT2 transporters as a tool to improve photodynamic therapy of tumours. International Journal of Biochemistry and Cell Biology, 2006, 38, 1530-1539.	1.2	53
43	Mechanisms of 5-aminolevulic acid ester uptake in mammalian cells. British Journal of Pharmacology, 2006, 147, 825-833.	2.7	61
44	Photodynamic therapy: Regulation of porphyrin synthesis and hydrolysis from ALA esters. Journal of Photochemistry and Photobiology B: Biology, 2006, 83, 129-136.	1.7	31
45	Distribution of 5-aminolevulinic acid derivatives and induced porphyrin kinetics in mice tissues. Cancer Chemotherapy and Pharmacology, 2006, 58, 478-486.	1.1	12
46	Tumor cell lines resistant to ALA-mediated photodynamic therapy and possible tools to target surviving cells. International Journal of Oncology, 2006, 29, 397.	1.4	15
47	Aminolevulinic Acid Derivatives and Liposome Delivery as Strategies for Improving 5-Aminolevulinic Acid- Mediated Photodynamic Therapy. Current Medicinal Chemistry, 2006, 13, 1157-1168.	1.2	55
48	Use of ALA and ALA Derivatives for Optimizing ALA-based Photodynamic Therapy: A Review of Our Experience. Journal of Environmental Pathology, Toxicology and Oncology, 2006, 25, 127-144.	0.6	14
49	Tumor cell lines resistant to ALA-mediated photodynamic therapy and possible tools to target surviving cells. International Journal of Oncology, 2006, 29, 397-405.	1.4	11
50	Sensitivity to ALA-PDT of cell lines with different nitric oxide production and resistance to NO cytotoxicity. Journal of Photochemistry and Photobiology B: Biology, 2005, 80, 195-202.	1.7	19
51	No cross-resistance between ALA-mediated photodynamic therapy and nitric oxide. Nitric Oxide - Biology and Chemistry, 2005, 13, 155-162.	1.2	8
52	Aminolevulinic acid: from its unique biological function to its star role in photodynamic therapy. International Journal of Biochemistry and Cell Biology, 2005, 37, 272-276.	1.2	125
53	Porphyrin synthesis from ALA derivatives for photodynamic therapy. In vitro and in vivo studies. British Journal of Cancer, 2004, 90, 1660-1665.	2.9	60
54	A method for separating ALA from ALA derivatives using ionic exchange extraction. Journal of Photochemistry and Photobiology B: Biology, 2004, 75, 157-163.	1.7	17

#	Article	IF	CITATIONS
55	A method for separating ALA from ALA derivatives using ionic exchange extraction. Journal of Photochemistry and Photobiology B: Biology, 2004, 75, 157-163.	1.7	6
56	Mechanistic studies on δ-aminolevulinic acid uptake and efflux in a mammary adenocarcinoma cell line. British Journal of Cancer, 2003, 89, 173-177.	2.9	16
57	Topical application of ALA and ALA hexyl ester on a subcutaneous murine mammary adenocarcinoma: tissue distribution. British Journal of Cancer, 2003, 88, 432-437.	2.9	14
58	ALA and ALA hexyl ester in free and liposomal formulations for the photosensitisation of tumour organ cultures. British Journal of Cancer, 2002, 86, 837-842.	2.9	48
59	Î-Aminolevulinic acid transport in murine mammary adenocarcinoma cells is mediated by beta transporters. British Journal of Cancer, 2002, 87, 471-474.	2.9	46
60	Scavengers Protection of Cells Against ALA-based Photodynamic Therapy-induced Damage. Lasers in Medical Science, 2002, 17, 222-229.	1.0	17
61	Photodynamic Therapy of Activated and Resting Lymphocytes and Its Antioxidant Adaptive Response. Lasers in Medical Science, 2002, 17, 42-50.	1.0	16
62	ALA and ALA hexyl ester induction of porphyrins after their systemic administration to tumour bearing mice. British Journal of Cancer, 2002, 87, 790-795.	2.9	35
63	Rational Design of 5-Aminolevulinic Acid Derivatives Aimed at Improving Photodynamic Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2002, 2, 465-475.	7.0	47
64	Scavengers modifying the phototoxicity induced by ALA-mediated photodynamic therapy. , 2001, , .		0
65	Photosensitization and mechanism of cytotoxicity induced by the use of ALA derivatives in photodynamic therapy. British Journal of Cancer, 2001, 85, 279-284.	2.9	77
66	ALA and ALA hexyl ester-induced porphyrin synthesis in chemically induced skin tumours: the role of different vehicles on improving photosensitization. British Journal of Cancer, 2001, 85, 1794-1800.	2.9	40
67	The influence of the vehicle on the synthesis of porphyrins after topical application of 5-aminolaevulinic acid. Implications in cutaneous photodynamic sensitization. British Journal of Dermatology, 2000, 143, 564-572.	1.4	58
68	Comparative effect of ALA derivatives on protoporphyrin IX production in human and rat skin organ cultures. British Journal of Cancer, 1999, 80, 1525-1532.	2.9	78
69	Tissue distribution and kinetics of endogenous porphyrins synthesized after topical application of ALA in different vehicles. British Journal of Cancer, 1999, 81, 13-18.	2.9	22
70	Topical and intratumoral photodynamic therapy with 5-aminolevulinic acid in a subcutaneous murine mammary adenocarcinoma. Cancer Letters, 1999, 141, 29-38.	3.2	18
71	Potentiation of the 5-aminolevulinic acid-based photodynamic therapy with cyclophosphamide. Cancer Biochemistry Biophysics, 1998, 16, 183-96.	0.1	4
72	Enhancement of aminolevulinic acid based photodynamic therapy by adriamycin. Cancer Letters, 1997, 121, 105-113.	3.2	29

#	Article	IF	CITATIONS
73	Metabolic changes in the heme pathway driven by cyclophosphamide treatment in mice. Cellular and Molecular Biology, 1997, 43, 95-101.	0.3	3
74	Photodynamic action of endogenously synthesized porphyrins from aminolevulinic acid, using a new model for assaying the effectiveness of tumoral cell killing. International Journal of Biochemistry & Cell Biology, 1993, 25, 1395-1398.	0.8	23