Blas Mola-Yudego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7317395/publications.pdf Version: 2024-02-01

RIAS MOLA-YUDECO

#	Article	IF	CITATIONS
1	Determinants of farmers' waste generation and disposal in rural areas of central China. Environmental Science and Pollution Research, 2023, 30, 9011-9021.	2.7	4
2	Positioning the biofuel policy in the bioeconomy of the <i>BioEast</i> macro-region. Biofuels, 2022, 13, 833-842.	1.4	5
3	Nationwide climate-sensitive models for stand dynamics and forest scenario simulation. Forest Ecology and Management, 2022, 505, 119909.	1.4	9
4	Characteristics and emerging patterns of forest conflicts in Europe - What can they tell us?. Forest Policy and Economics, 2022, 136, 102671.	1.5	14
5	Industrial End-Users' Preferred Characteristics for Wood Biomass Feedstocks. Energies, 2022, 15, 3721.	1.6	2
6	How Much Can We See from a UAV-Mounted Regular Camera? Remote Sensing-Based Estimation of Forest Attributes in South American Native Forests. Remote Sensing, 2021, 13, 2151.	1.8	4
7	The effect of bogie track and forwarder design on rut formation in a peatland. International Journal of Forest Engineering, 2021, 32, 12-19.	0.4	3
8	Reed Canary Grass for Energy in Sweden: Yields, Land-Use Patterns, and Climatic Profile. Forests, 2021, 12, 897.	0.9	7
9	From preferences to concerted policy on mandated share for renewable energy in transport. Energy Policy, 2021, 155, 112355.	4.2	9
10	Strategic deployment of riparian buffers and windbreaks in Europe can co-deliver biomass and environmental benefits. Communications Earth & Environment, 2021, 2, .	2.6	11
11	New energy crop alternatives for Northern Europe: Yield, chemical and physical properties of Giant knotweed (Fallopia sachalinensis var. †Igniscum') and Virginia mallow (Sida hermaphrodita). Fuel, 2021, 304, 121349.	3.4	10
12	Where and when are plantations established? Land-use replacement patterns of fast-growing plantations on agricultural land. Biomass and Bioenergy, 2021, 144, 105921.	2.9	10
13	Beneficial land use change: Strategic expansion of new biomass plantations can reduce environmental impacts from EU agriculture. Global Environmental Change, 2020, 60, 101990.	3.6	55
14	Multifunctional perennial production systems for bioenergy: performance and progress. Wiley Interdisciplinary Reviews: Energy and Environment, 2020, 9, e375.	1.9	26
15	Renewable energy and wood fuel productions in the Nordic region: Can it be changed?. Journal of Cleaner Production, 2020, 276, 123547.	4.6	7
16	Predicting individual tree growth using stand-level simulation, diameter distribution, and Bayesian calibration. Annals of Forest Science, 2020, 77, 1.	0.8	6
17	The invasive forest pathogen Hymenoscyphus fraxineus boosts mortality and triggers niche replacement of European ash (Fraxinus excelsior). Scientific Reports, 2020, 10, 5310.	1.6	16
18	Size dependency of variables influencing fire occurrence in Mediterranean forests of Eastern Spain. European Journal of Forest Research, 2020, 139, 525-537.	1.1	6

#	Article	IF	CITATIONS
19	Modelling damage occurrence by snow and wind in forest ecosystems. Ecological Modelling, 2019, 408, 108741.	1.2	27
20	Fire and burn severity assessment: Calibration of Relative Differenced Normalized Burn Ratio (RdNBR) with field data. Journal of Environmental Management, 2019, 235, 342-349.	3.8	39
21	Simulating the effects of wind and snow damage on the optimal management of Norwegian spruce forests. Forestry, 2019, 92, 406-416.	1.2	10
22	Positive water linkages of producing short rotation poplars and willows for bioenergy and phytotechnologies. Wiley Interdisciplinary Reviews: Energy and Environment, 2019, 8, e345.	1.9	22
23	Estimation of forest biomass components using airborne LiDAR and multispectral sensors. IForest, 2019, 12, 207-213.	0.5	13
24	Energy analysis of poplar production for bioenergy in Sweden. Biomass and Bioenergy, 2018, 112, 110-120.	2.9	15
25	Most similar neighbor imputation of forest attributes using metrics derived from combined airborne LIDAR and multispectral sensors. International Journal of Digital Earth, 2018, 11, 1205-1218.	1.6	8
26	HEIGHT-DIAMETER MODELS FOR Eucalyptus sp. PLANTATIONS IN BRAZIL. Cerne, 2018, 24, 9-17.	0.9	18
27	Thinning regimes and initial spacing for Eucalyptus plantations in Brazil. Anais Da Academia Brasileira De Ciencias, 2018, 90, 255-265.	0.3	22
28	Energy analysis of willow production for bioenergy in Sweden. Renewable and Sustainable Energy Reviews, 2018, 93, 473-482.	8.2	25
29	Thinning regimes and initial spacing for Eucalyptus plantations in Brazil. Anais Da Academia Brasileira De Ciencias, 2018, 90, 255-265.	0.3	3
30	Identification of structural breaks in the forest product markets: how sensitive are to changes in the Nordic region?. Mitigation and Adaptation Strategies for Global Change, 2017, 22, 469-483.	1.0	3
31	Reviewing wood biomass potentials for energy in Europe: the role of forests and fast growing plantations. Biofuels, 2017, 8, 401-410.	1.4	27
32	Mechanised harvesting of short-rotation coppices. Renewable and Sustainable Energy Reviews, 2017, 76, 90-104.	8.2	39
33	Wood biomass potentials for energy in northern Europe: Forest or plantations?. Biomass and Bioenergy, 2017, 106, 95-103.	2.9	40
34	How does forest composition and structure affect the stability against wind and snow?. Forest Ecology and Management, 2017, 401, 215-222.	1.4	40
35	Achievable or unbelievable? Expert perceptions of the European Union targets for emissions, renewables, and efficiency. Energy Research and Social Science, 2017, 34, 144-153.	3.0	14
36	Adaptive management rules for Pinus nigra Arnold ssp. salzmannii stands under risk of fire. Annals of Forest Science, 2017, 74, 1.	0.8	4

#	Article	IF	CITATIONS
37	Impact of Populus Plantations on Water and Soil Quality. Bioenergy Research, 2017, 10, 750-759.	2.2	10
38	Poplar and willow plantations on agricultural land in Sweden: Area, yield, groundwater quality and soil organic carbon. Forest Ecology and Management, 2017, 383, 99-107.	1.4	41
39	Nitrogen fertilization of poplar plantations on agricultural land: effects on diameter increments and leaching. Scandinavian Journal of Forest Research, 2017, 32, 700-707.	0.5	8
40	What variables make a forest stand vulnerable to browsing damage occurrence?. Silva Fennica, 2017, 51, .	0.5	7
41	Climate-sensitive site index models for Norway. Canadian Journal of Forest Research, 2016, 46, 794-803.	0.8	21
42	Assessing external factors on substitution of fossil fuel by biofuels: model perspective from the Nordic region. Mitigation and Adaptation Strategies for Global Change, 2016, 21, 445-460.	1.0	6
43	Spatial yield estimates of fastâ€growing willow plantations for energy based on climatic variables in northern Europe. GCB Bioenergy, 2016, 8, 1093-1105.	2.5	18
44	Assessment of the Main Natural Disturbances on Norwegian Forest Based on 20 Years of National Inventory. PLoS ONE, 2016, 11, e0161361.	1.1	20
45	Pruning effect in Eucalyptus grandis x Eucalyptus urophylla clone growth. Scientia Forestalis/Forest Sciences, 2016, 44, .	0.2	0
46	Different Factors for Different Causes: Analysis of the Spatial Aggregations of Fire Ignitions in Catalonia (Spain). Risk Analysis, 2015, 35, 1197-1209.	1.5	31
47	How Much Yield Should We Expect from Fast-Growing Plantations for Energy? Divergences Between Experiments and Commercial Willow Plantations. Bioenergy Research, 2015, 8, 1769-1777.	2.2	29
48	Cradle-to-gate life cycle assessment of Eucalyptus globulus short rotation plantations in Chile. Journal of Cleaner Production, 2015, 99, 239-249.	4.6	52
49	Diameter–Height Models for Fast-growing Poplar Plantations on Agricultural Land in Sweden. Bioenergy Research, 2015, 8, 1759-1768.	2.2	9
50	Land use evolution and management under recurrent conflict conditions: Umbundu agroforestry system in the Angolan Highlands. Land Use Policy, 2015, 42, 460-470.	2.5	19
51	Stakeholders' Perceptions of Bioenergy—Global Coverage and Policy Implications. , 2015, , 377-391.		5
52	Assessing chipper productivity and operator effects in forest biomass operations. Silva Fennica, 2015, 49, .	0.5	9
53	A conceptual framework for the introduction of energy crops. Renewable Energy, 2014, 72, 29-38.	4.3	30
54	The coppice-with-standards silvicultural system as applied to Eucalyptus plantations — a review. Journal of Forestry Research, 2014, 25, 237-248.	1.7	25

#	Article	IF	CITATIONS
55	Cradle-to-gate Life Cycle Assessment of forest operations in Europe: environmental and energy profiles. Journal of Cleaner Production, 2014, 66, 188-198.	4.6	47
56	Spatial analysis of the wood pellet production for energy in Europe. Renewable Energy, 2014, 63, 76-83.	4.3	43
57	Understanding bioenergy conflicts: Case of a jatropha project in Kenya's Tana Delta. Land Use Policy, 2014, 41, 138-148.	2.5	20
58	Life cycle assessment of potential energy uses for short rotation willow biomass in Sweden. International Journal of Life Cycle Assessment, 2013, 18, 783-795.	2.2	36
59	Business process mapping and discrete-event simulation of two forest biomass supply chains. Biomass and Bioenergy, 2013, 56, 370-381.	2.9	34
60	Forest chips for energy in Europe: Current procurement methods and potentials. Renewable and Sustainable Energy Reviews, 2013, 21, 562-571.	8.2	52
61	A quantitative review of the representation of forest conflicts across the world: Resource periphery and emerging patterns. Forest Policy and Economics, 2013, 33, 11-20.	1.5	29
62	Media coverage of forest conflicts: A reflection of the conflicts' intensity and impact?. Scandinavian Journal of Forest Research, 2012, 27, 143-153.	0.5	12
63	Quantitative investigation of forest conflicts using different data collection methods. Scandinavian Journal of Forest Research, 2012, 27, 130-142.	0.5	2
64	Students' views on forestry education: A cross-national comparison across three universities in Brazil, China and Finland. Forest Policy and Economics, 2012, 25, 123-131.	1.5	19
65	Mapping fire risk in the Model Forest of Urbión (Spain) based on airborne LiDAR measurements. Forest Ecology and Management, 2012, 282, 149-156.	1.4	69
66	Impact of Willow Short Rotation Coppice on Water Quality. Bioenergy Research, 2012, 5, 537-545.	2.2	61
67	Changes in Organic Carbon and Trace Elements in the Soil of Willow Short-Rotation Coppice Plantations. Bioenergy Research, 2012, 5, 563-572.	2.2	63
68	Practices and perceptions on the development of forest bioenergy in China from participants in national forestry training courses. Biomass and Bioenergy, 2012, 40, 53-62.	2.9	17
69	Environmental assessment of energy production based on long term commercial willow plantations in Sweden. Science of the Total Environment, 2012, 421-422, 210-219.	3.9	63
70	Chipping operations and efficiency in different operational environments. Silva Fennica, 2012, 46, .	0.5	31
71	Environmental campaigns against forest companies: What are the campaigns trying to achieve?. Forest Systems, 2012, 21, 247.	0.1	4
72	Public perception on forestry issues in the Region of Valencia. Forest Systems, 2012, 21, 99.	0.1	6

#	Article	IF	CITATIONS
73	Exploration of the relevance of geographical, environmental and socio-economic indicators regarding forest conflict types. International Forestry Review, 2011, 13, 46-55.	0.3	3
74	Predicting and mapping productivity of short rotation willow plantations in Sweden based on climatic data using a non-parametric method. Agricultural and Forest Meteorology, 2011, 151, 875-881.	1.9	6
75	Chinese university students' knowledge and attitudes regarding forest bio-energy. Renewable and Sustainable Energy Reviews, 2011, 15, 3649-3657.	8.2	57
76	Natural drying treatments during seasonal storage of wood for bioenergy in different European locations. Biomass and Bioenergy, 2011, 35, 4238-4247.	2.9	70
77	Predicting understory maximum shrubs cover using altitude and overstory basal area in different Mediterranean forests. European Journal of Forest Research, 2011, 130, 55-65.	1.1	42
78	Using multiscale spatial analysis to assess fire ignition density in Catalonia, Spain. Annals of Forest Science, 2011, 68, 861-871.	0.8	19
79	Pulling effects of district heating plants on the adoption and spread of willow plantations for biomass: The power plant in EnkA¶ping (Sweden). Biomass and Bioenergy, 2011, 35, 2986-2992.	2.9	9
80	Trends and productivity improvements from commercial willow plantations in Sweden during the period 1986–2000. Biomass and Bioenergy, 2011, 35, 446-453.	2.9	40
81	Exploration of the relevance of geographical, environmental and socio-economic indicators regarding forest conflict types. International Forestry Review, 2011, 13, 46-55.	0.3	4
82	Present and future trends in pellet markets, raw materials, and supply logistics in Sweden and Finland. Renewable and Sustainable Energy Reviews, 2010, 14, 3068-3075.	8.2	62
83	Mapping the expansion and distribution of willow plantations for bioenergy in Sweden: Lessons to be learned about the spread of energy crops. Biomass and Bioenergy, 2010, 34, 442-448.	2.9	48
84	The TRANSFOR success story: International forestry education through exchange. Forestry Chronicle, 2010, 86, 57-62.	0.5	2
85	Determining forest conflict hotspots according to academic and environmental groups. Forest Policy and Economics, 2010, 12, 575-580.	1.5	38
86	Regional potential yields of short rotation willow plantations on agricultural land in Northern Europe. Silva Fennica, 2010, 44, .	0.5	43
87	Blanket strategy: A response of environmental groups to the globalising forest industry. International Journal of the Commons, 2010, 4, 729.	0.6	18
88	Wood biomass production potential on agricultural lands in Northern Europe – achieving the goals of energy policy. Dissertationes Forestales, 2009, 2009, .	0.1	2
89	Yield models for commercial willow biomass plantations in Sweden. Biomass and Bioenergy, 2008, 32, 829-837.	2.9	98
90	The effects of policy incentives in the adoption of willow short rotation coppice for bioenergy in Sweden. Energy Policy, 2008, 36, 3062-3068.	4.2	53