Nathan D Mcclenaghan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7316993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular-Scale Logic Gates. Chemistry - A European Journal, 2004, 10, 574-586.	1.7	591
2	Proof-of-Principle of Molecular-Scale Arithmetic. Journal of the American Chemical Society, 2000, 122, 3965-3966.	6.6	323
3	Improving the photophysical properties of copper(I) bis(phenanthroline) complexes. Coordination Chemistry Reviews, 2008, 252, 2572-2584.	9.5	307
4	Excited-state equilibration: a process leading to long-lived metal-to-ligand charge transfer luminescence in supramolecular systems. Coordination Chemistry Reviews, 2005, 249, 1336-1350.	9.5	229
5	Simultaneously Multiply-Configurable or Superposed Molecular Logic Systems Composed of ICT (Internal Charge Transfer) Chromophores and Fluorophores Integrated with One- or Two-Ion Receptors. Chemistry - A European Journal, 2002, 8, 4935-4945.	1.7	216
6	Ruthenium(II) Dendrimers Containing Carbazole-Based Chromophores as Branches. Journal of the American Chemical Society, 2003, 125, 5356-5365.	6.6	195
7	Title is missing!. Chemical Society Reviews, 2001, 30, 367-375.	18.7	165
8	Enhanced Photovoltaic Response in Hydrogen-Bonded All-Organic Devices. Organic Letters, 2005, 7, 3409-3412.	2.4	124
9	Harnessing supramolecular interactions in organic solid-state devices: Current status and future potential. Coordination Chemistry Reviews, 2010, 254, 2429-2445.	9.5	111
10	BF ₂ -Azadipyrromethenes: Probing the Excited-State Dynamics of a NIR Fluorophore and Photodynamic Therapy Agent. Journal of Physical Chemistry A, 2011, 115, 14034-14039.	1.1	88
11	Recent advances in luminescent polymetallic dendrimers containing the 2,3-bis(2′-pyridyl)pyrazine bridging ligand. Coordination Chemistry Reviews, 2002, 229, 67-74.	9.5	79
12	Solvent Switching of Intramolecular Energy Transfer in Bichromophoric Systems:Â Photophysics of (2,2â€ ⁻ -Bipyridine)tetracyanoruthenate(II)/Pyrenyl Complexes. Inorganic Chemistry, 2003, 42, 5489-5497.	1.9	78
13	Switching between molecular switch types by module rearrangement: Ca2+-enabled, H+-driven â€~Off–On–Off', H+-driven YES and PASS 0 as well as H+, Ca2+-driven AND logic operations. Chemical Communications, 2004, , 2048-2049.	2.2	78
14	Towards ruthenium(ii) polypyridine complexes with prolonged and predetermined excited state lifetimesElectronic supplementary information (ESI) available: synthesis of the new ligands bpy–pyr and pyr–bpy–pyr and of their ruthenium compounds. See http://www.rsc.org/suppdata/cc/b1/b110291e/. Chemical Communications, 2002, , 602-603.	2.2	75
15	Absorption Spectra and Photophysical Properties of a Series of Polypyridine Ligands Containing Appended Pyrenyl and Anthryl Chromophores and of Their Ruthenium(II) and Osmium(II) Complexes. Journal of Physical Chemistry A, 2003, 107, 447-455.	1.1	74
16	Facile Synthesis of a Fullerene-Barbituric Acid Derivative and Supramolecular Catalysis of Its Photoinduced Dimerization. Journal of the American Chemical Society, 2003, 125, 13004-13005.	6.6	74
17	Hierarchical self-assembly of all-organic photovoltaic devices. Tetrahedron, 2006, 62, 2050-2059.	1.0	74
18	A ratiometric luminescent oxygen sensor based on a chemically functionalized quantum dot. Chemical Communications, 2011, 47, 325-327.	2.2	74

2

NATHAN D MCCLENAGHAN

#	Article	IF	CITATIONS
19	Photoinduced Electron Transfer and Hole Migration in Nanosized Helical Aromatic Oligoamide Foldamers. Journal of the American Chemical Society, 2016, 138, 13568-13578.	6.6	71
20	Polymersome Popping by Lightâ€Induced Osmotic Shock under Temporal, Spatial, and Spectral Control. Angewandte Chemie - International Edition, 2017, 56, 1566-1570.	7.2	71
21	Photo-triggered polymer nanomedicines: From molecular mechanisms to therapeutic applications. Advanced Drug Delivery Reviews, 2019, 138, 148-166.	6.6	69
22	Metal complexes as components of luminescent signalling systems. Coordination Chemistry Reviews, 1999, 185-186, 297-306.	9.5	68
23	Equilibration between Three Different Excited States in a Bichromophoric Copper(I) Polypyridine Complex. Journal of the American Chemical Society, 2007, 129, 8688-8689.	6.6	62
24	Photocatalyzed Sulfide Oxygenation with Water as the Unique Oxygen Atom Source. Inorganic Chemistry, 2012, 51, 2222-2230.	1.9	60
25	Reversible electronic energy transfer: a means to govern excited-state properties of supramolecular systems. Chemical Society Reviews, 2010, 39, 506-515.	18.7	59
26	Enantiopure Dendritic Polyoxometalates: Chirality Transfer from Dendritic Wedges to a POM Cluster for Asymmetric Sulfide Oxidation. Chemistry - A European Journal, 2009, 15, 8703-8708.	1.7	58
27	Copper(<scp>i</scp>)-photocatalyzed trifluoromethylation of alkenes. Chemical Communications, 2015, 51, 9571-9574.	2.2	56
28	Chemical approaches to nanometre-scale logic gates. Journal of Physics Condensed Matter, 2006, 18, S1847-S1872.	0.7	52
29	Direct Observation of Reversible Electronic Energy Transfer Involving an Iridium Center. Inorganic Chemistry, 2014, 53, 2677-2682.	1.9	52
30	Supramolecular Control of Oligothienylenevinyleneâ^'Fullerene Interactions:  Evidence for a Ground-State EDA Complex. Organic Letters, 2005, 7, 807-810.	2.4	48
31	Benzophenone <i>vs</i> . Copper/Benzophenone in Lightâ€Promoted Atom Transfer Radical Additions (ATRAs): Highly Effective Iodoperfluoroalkylation of Alkenes/Alkynes and Mechanistic Studies. Advanced Synthesis and Catalysis, 2016, 358, 2949-2961.	2.1	48
32	Ruthenium(ii) complexes based on tridentate polypyridine ligands that feature long-lived room-temperature luminescence. Chemical Communications, 2013, 49, 9110.	2.2	47
33	Copper Catalyst Activation Driven by Photoinduced Electron Transfer: A Prototype Photolatent Click Catalyst. Angewandte Chemie - International Edition, 2012, 51, 7137-7141.	7.2	46
34	Extending the Lightâ€Harvesting Properties of Transitionâ€Metal Dendrimers. ChemPhysChem, 2007, 8, 2643-2651.	1.0	40
35	Facile functionalization of a fully fluorescent perfluorophenyl BODIPY: photostable thiol and amine conjugates. Chemical Communications, 2011, 47, 10425.	2.2	40
36	Electronic Energy Transfer Modulation in a Dynamic Foldaxane: Proofâ€ofâ€Principle of a Lifetimeâ€Based Conformation Probe. Angewandte Chemie - International Edition, 2016, 55, 1328-1333.	7.2	39

#	Article	IF	CITATIONS
37	The Anthracen-9-ylmethyloxy Unit: An Underperforming Motif Within the Fluorescent PET (Photoinduced Electron Transfer) Sensing Framework. Journal of Fluorescence, 2005, 15, 769-775.	1.3	37
38	Optically Active Tripodal Dendritic Polyoxometalates: Synthesis, Characterization and Their Use in Asymmetric Sulfide Oxidation with Hydrogen Peroxide. European Journal of Inorganic Chemistry, 2011, 2011, 727-738.	1.0	35
39	Incorporation of luminescent CdSe/ZnS core-shell quantum dots and PbS quantum dots into solution-derived chalcogenide glass films. Optical Materials Express, 2013, 3, 729.	1.6	35
40	Facile Access to Highly Fluorescent Nanofibers and Microcrystals via Reprecipitation of 2-Phenyl-benzoxazole Derivatives. Langmuir, 2012, 28, 855-863.	1.6	34
41	A density functional theory study of the surface relaxation and reactivity of Cu2O(100). Surface Science, 2000, 464, 223-232.	0.8	33
42	Water-soluble naphthalimide-based â€~Pourbaix sensors': pH and redox-activated fluorescent AND logic gates based on photoinduced electron transfer. New Journal of Chemistry, 2016, 40, 9917-9922.	1.4	33
43	Title is missing!. Chemical Communications, 2001, , 2634-2635.	2.2	32
44	Switchable platinum-based tweezers with Pt–Pt bonding and selective luminescence quenching. Dalton Transactions, 2015, 44, 8543-8551.	1.6	31
45	Dynamics of ion-regulated photoinduced electron transfer in BODIPY-BAPTA conjugates. Photochemical and Photobiological Sciences, 2012, 11, 1666-1674.	1.6	30
46	Terpy(Pt–salphen) ₂ Switchable Luminescent Molecular Tweezers. Chemistry - A European Journal, 2014, 20, 15799-15807.	1.7	30
47	Photosensitizer localization in amphiphilic block copolymers controls photodynamic therapy efficacy. Nanoscale, 2017, 9, 11180-11186.	2.8	30
48	Impact of Water on the Cis–Trans Photoisomerization of Hydroxychalcones. Journal of Physical Chemistry A, 2013, 117, 4167-4173.	1.1	29
49	Designed Longâ€Lived Emission from CdSe Quantum Dots through Reversible Electronic Energy Transfer with a Surfaceâ€Bound Chromophore. Angewandte Chemie - International Edition, 2018, 57, 3104-3107.	7.2	29
50	Lanthanide Luminescence Modulation by Cation–π Interaction in a Bioinspired Scaffold: Selective Detection of Copper(I). Angewandte Chemie - International Edition, 2015, 54, 11453-11456.	7.2	28
51	A fluorescent AND logic gate based on a ferrocene-naphthalimide-piperazine format responsive to acidity and oxidizability. Dyes and Pigments, 2018, 157, 278-283.	2.0	28
52	Sunlightâ€Driven Copper atalyst Activation Applied to Photolatent Click Chemistry. Chemistry - A European Journal, 2014, 20, 13181-13187.	1.7	27
53	The Pyridyl-Tag Strategy Applied to the Hydrocarbon/Perfluorocarbon Phase-Switching of a Porphyrin and a Fullerene. Journal of the American Chemical Society, 2002, 124, 12942-12943.	6.6	26
54	High performance optical oxygen sensors based on iridium complexes exhibiting interchromophore energy shuttling. Analyst, The, 2016, 141, 3090-3097.	1.7	26

#	Article	IF	CITATIONS
55	Remote Photoregulated Ring Gliding in a [2]Rotaxane via a Molecular Effector. Organic Letters, 2017, 19, 154-157.	2.4	26
56	Enhanced photolabelling of luminescent EuIII centres with a chelating antenna in a micellar nanodomain. Chemical Communications, 2010, 46, 2486.	2.2	25
57	Hydrosoluble dendritic poly(ethylene oxide)s with zinc tetraphenylporphyrin branching points as photosensitizers. Polymer Chemistry, 2013, 4, 1903.	1.9	24
58	Formation of a Hydrogen-Bonded Barbiturate [2]-Rotaxane. Organic Letters, 2014, 16, 1358-1361.	2.4	24
59	A Photoreducible Copper(II)â€Tren Complex of Practical Value: Generation of a Highly Reactive Click Catalyst. Chemistry - A European Journal, 2013, 19, 16231-16239.	1.7	23
60	Photodriven [2]rotaxane–[2]catenane interconversion. Chemical Communications, 2015, 51, 2810-2813.	2.2	23
61	Molecular engineering of logic gate types by module rearrangement in †Pourbaix Sensors': the effect of excited-state electric fields. Organic and Biomolecular Chemistry, 2018, 16, 6195-6201.	1.5	23
62	Hydrogenâ€Bonding Donorâ€Acceptor Stenhouse Adducts. ChemPhotoChem, 2020, 4, 407-412.	1.5	23
63	Concatenation of reversible electronic energy transfer and photoinduced electron transfer to control a molecular piston. Chemical Communications, 2012, 48, 3981.	2.2	22
64	Logische Schaltungen mit leuchtenden Molekülen. Nachrichten Aus Der Chemie, 2001, 49, 602-606.	0.0	20
65	Reversible Photocapture of a [2]Rotaxane Harnessing a Barbiturate Template. Journal of Organic Chemistry, 2015, 80, 988-996.	1.7	19
66	Aromatic oligoamide foldamers as versatile scaffolds for induced circularly polarized luminescence at adjustable wavelengths. Chemical Communications, 2019, 55, 9825-9828.	2.2	19
67	Excited-state equilibration in a meso-/microporous material-hosted bichromophoric [Ruthenium (2,2′-bipyridine)3]2+: Reversible energy transfer and photosensitized electron pumping. Inorganica Chimica Acta, 2007, 360, 987-994.	1.2	18
68	Photoswitchable azobenzene-appended iridium(<scp>iii</scp>) complexes. Dalton Transactions, 2016, 45, 13726-13741.	1.6	18
69	Polymersome Popping by Lightâ€Induced Osmotic Shock under Temporal, Spatial, and Spectral Control. Angewandte Chemie, 2017, 129, 1588-1592.	1.6	18
70	Designed Longâ€Lived Emission from CdSe Quantum Dots through Reversible Electronic Energy Transfer with a Surfaceâ€Bound Chromophore. Angewandte Chemie, 2018, 130, 3158-3161.	1.6	17
71	Reversible hydrocarbon/perfluorocarbon phase-switching of [Ru(bipy)3]2+ driven by supramolecular heteromeric fluorous carboxylate–carboxylic acid H-bond interactions. Chemical Communications, 2011, 47, 8250.	2.2	16
72	Electronic Energy Transfer Modulation in a Dynamic Foldaxane: Proofâ€ofâ€Principle of a Lifetimeâ€Based Conformation Probe. Angewandte Chemie, 2016, 128, 1350-1355.	1.6	16

#	Article	IF	CITATIONS
73	Harnessing Reversible Electronic Energy Transfer: From Molecular Dyads to Molecular Machines. ChemPhysChem, 2016, 17, 1794-1804.	1.0	15
74	Efficient Oxidation and Destabilization of Zn(Cys) ₄ Zinc Fingers by Singlet Oxygen. Angewandte Chemie - International Edition, 2014, 53, 9365-9368.	7.2	14
75	[2]Rotaxanes comprising a macrocylic Hamilton receptor obtained using active template synthesis: synthesis and guest complexation. Supramolecular Chemistry, 2016, 28, 733-741.	1.5	13
76	Electrospray deposition of quantum dot-doped Ge23Sb7S70 chalcogenide glass films. Thin Solid Films, 2017, 626, 194-199.	0.8	13
77	Photochromic rotaxanes and pseudorotaxanes. Photochemical and Photobiological Sciences, 2019, 18, 2102-2111.	1.6	13
78	Regulation of Macrocycle Shuttling Rates in [2]Rotaxanes by Aminoâ€Acid Speed Bumps in Organic–Aqueous Solvent Mixtures. European Journal of Organic Chemistry, 2020, 2020, 5820-5827.	1.2	12
79	Reactivity of a Zn(Cys) 2 (His) 2 Zinc Finger with Singlet Oxygen: Oxidation Directed toward Cysteines but not Histidines. Chemistry - A European Journal, 2015, 21, 14002-14010.	1.7	11
80	Effective ascorbate-free and photolatent click reactions in water using a photoreducible copper(II)-ethylenediamine precatalyst. Beilstein Journal of Organic Chemistry, 2015, 11, 1950-1959.	1.3	11
81	Light-driven water oxidation using hybrid photosensitizer-decorated Co3O4 nanoparticles. Materials Today Energy, 2018, 9, 506-515.	2.5	11
82	Ion Translocation in Artificial Molecule-based Systems Induced by Light, Electrons, or Chemicals. Australian Journal of Chemistry, 2011, 64, 1301.	0.5	10
83	Supramolecular Architectures Incorporating Hydrogenâ€Bonding Barbiturate Receptors. Asian Journal of Organic Chemistry, 2015, 4, 192-202.	1.3	10
84	Saccharide-induced modulation of photoluminescence lifetime in microgels. Physical Chemistry Chemical Physics, 2016, 18, 16812-16821.	1.3	7
85	A blue 4′,7-diaminoflavylium cation showing an extended pH range stability. Physical Chemistry Chemical Physics, 2016, 18, 8920-8925.	1.3	7
86	Photocapture of dynamic hydrogen-bonded assemblies. International Journal of Photoenergy, 2004, 6, 185-192.	1.4	6
87	Artificial Iono―and Photosensitive Membranes Based on an Amphiphilic Azaâ€Crownâ€5ubstituted Hemicyanine. ChemPhysChem, 2014, 15, 2823-2833.	1.0	6
88	Light―and pHâ€regulated Waterâ€soluble Pseudorotaxanes Comprising a Cucurbit[7]uril and a Flavyliumâ€based Axle. Chemistry - A European Journal, 2021, 27, 16512-16522.	1.7	6
89	Preparation and Photophysical Properties of Mixed-Ligand Cyclometallated Complexes of Ir(III) with a Dendritic Bipyridine Ligand. Russian Journal of General Chemistry, 2005, 75, 665-671.	0.3	5
90	2D and 3D surface photopatterning via laser-promoted homopolymerization of a perfluorophenyl azide-substituted BODIPY. Nanoscale, 2017, 9, 16908-16914.	2.8	5

#	Article	IF	CITATIONS
91	Macrocyclic Hamilton receptor-shuttling dynamics in [2]rotaxanes. Supramolecular Chemistry, 2020, 32, 546-556.	1.5	5
92	A fluorous sodium <scp>l</scp> -prolinate derivative as low molecular weight gelator for perfluorocarbons. Chemical Communications, 2020, 56, 8655-8658.	2.2	5
93	Photolariats: synthesis, metal ion complexation and photochromism. Supramolecular Chemistry, 2012, 24, 462-472.	1.5	4
94	Macrocyclic Hamilton-type receptors comprising a ferrocene pivot. Supramolecular Chemistry, 2018, 30, 869-875.	1.5	4
95	Influence of amino acid sequence in a peptidic Cu ⁺ -responsive luminescent probe inspired by the copper chaperone CusF. Organic and Biomolecular Chemistry, 2018, 16, 5626-5634.	1.5	4
96	Influence of Positional Isomerism on the Chiroptical Properties of Functional Aromatic Oligoamide Foldamers. ChemPlusChem, 2021, 86, 496-503.	1.3	4
97	Alkylation of the α-amino C–H bonds of anilines photocatalyzed by a DMEDA-Cu-benzophenone complex: reaction scope and mechanistic studies. Organic and Biomolecular Chemistry, 2021, 19, 5800-5805.	1.5	4
98	Shining light on supramolecular assemblies. Pure and Applied Chemistry, 2009, 81, 1677-1685.	0.9	3
99	A prototype reversible polymersome-stabilized H ₂ S photoejector operating under pseudophysiological conditions. Organic and Biomolecular Chemistry, 2016, 14, 6394-6397.	1.5	3
100	Photoreversible stretching of a BAPTA chelator marshalling Ca2+-binding in aqueous media. Beilstein Journal of Organic Chemistry, 2019, 15, 2801-2811.	1.3	3
101	Damming an electronic energy reservoir: ion-regulated electronic energy shuttling in a [2]rotaxane. Chemical Science, 2021, 12, 9196-9200.	3.7	3
102	Bioinspired Luminescent Europium-Based Probe Capable of Discrimination between Ag ⁺ and Cu ⁺ . Inorganic Chemistry, 2021, 60, 10791-10798.	1.9	3
103	Photomodulation of the Magnetisation of Co Nanocrystals Decorated with Rhodamine B. ChemPhysChem, 2011, 12, 2915-2919.	1.0	2
104	Ratiometric Luminescence Detection of Copper(I) by a Resonant System Comprising Two Antenna/Lanthanide Pairs. Inorganic Chemistry, 2021, 60, 17426-17434.	1.9	2
105	Selective and Cooperative Photocycloadditions within Multistranded Aromatic Sheets. Journal of the American Chemical Society, 2022, , .	6.6	2
106	Synthetic water soluble di-/tritopic molecular receptors exhibiting Ca2+/Mg2+ exchange. Organic and Biomolecular Chemistry, 2017, 15, 4367-4374.	1.5	1
107	Five-component, one-pot synthesis of an electroactive rotaxane comprising a bisferrocene macrocycle. Beilstein Journal of Organic Chemistry, 2020, 16, 1564-1571.	1.3	1
108	Molecular-Scale Logic Gates. ChemInform, 2004, 35, no.	0.1	0

#	Article	IF	CITATIONS
109	XXVth IUPAC Symposium on Photochemistry (XXV IUPAC Photochemistry). Pure and Applied Chemistry, 2015, 87, 509-509.	0.9	Ο
110	Innenrücktitelbild: Polymersome Popping by Lightâ€Induced Osmotic Shock under Temporal, Spatial, and Spectral Control (Angew. Chem. 6/2017). Angewandte Chemie, 2017, 129, 1699-1699.	1.6	0