Ewa Sadowy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7316743/publications.pdf

Version: 2024-02-01

196777 263392 2,315 66 29 45 citations h-index g-index papers 68 68 68 3257 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Penicillin-Resistant, Ampicillin-Susceptible <i>Enterococcus faecalis</i> in Polish Hospitals. Microbial Drug Resistance, 2021, 27, 291-300.	0.9	7
2	Mobile genetic elements beyond the VanB-resistance dissemination among hospital-associated enterococci and other Gram-positive bacteria. Plasmid, 2021, 114, 102558.	0.4	11
3	Complete Genome Sequence of a Polish Enterococcus faecalis <i>vanA</i> -Positive Hospital Isolate. Microbiology Resource Announcements, 2021, 10, e0066821.	0.3	2
4	Diversity of serotypes and new cps loci variants among Streptococcus suis isolates from pigs in Poland and Belarus. Veterinary Microbiology, 2020, 240, 108534.	0.8	12
5	Identification of Clinically Relevant Streptococcus and Enterococcus Species Based on Biochemical Methods and 16S rRNA, sodA, tuf, rpoB, and recA Gene Sequencing. Pathogens, 2020, 9, 939.	1.2	4
6	Emergence of linezolid-resistant Staphylococcus epidermidis in the tertiary children's hospital in Cracow, Poland. European Journal of Clinical Microbiology and Infectious Diseases, 2020, 39, 1717-1725.	1.3	23
7	Identification of Streptococcus pneumoniae and other Mitis streptococci: importance of molecular methods. European Journal of Clinical Microbiology and Infectious Diseases, 2020, 39, 2247-2256.	1.3	25
8	Relationships among streptococci from the mitis group, misidentified as Streptococcus pneumoniae. European Journal of Clinical Microbiology and Infectious Diseases, 2020, 39, 1865-1878.	1.3	7
9	Photoeradication of bacteria with porphycenes: Substituent effects on the efficiency. European Journal of Medicinal Chemistry, 2020, 200, 112472.	2.6	6
10	The changing epidemiology of VanB Enterococcus faecium in Poland. European Journal of Clinical Microbiology and Infectious Diseases, 2018, 37, 927-936.	1.3	12
11	Global emergence and population dynamics of divergent serotype 3 CC180 pneumococci. PLoS Pathogens, 2018, 14, e1007438.	2.1	74
12	Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resistance Updates, 2018, 40, 25-39.	6.5	165
13	Linezolid resistance genes and genetic elements enhancing their dissemination in enterococci and streptococci. Plasmid, 2018, 99, 89-98.	0.4	79
14	Linezolid-resistant enterococci in Polish hospitals: species, clonality and determinants of linezolid resistance. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 1279-1286.	1.3	72
15	Distribution of antimicrobial resistance determinants, virulence-associated factors and clustered regularly interspaced palindromic repeats loci in isolates of Enterococcus faecalis from various settings and genetic lineages. Pathogens and Disease, 2017, 75, .	0.8	20
16	Antimicrobial photodynamic therapy by means of porphycene photosensitizers. Journal of Photochemistry and Photobiology B: Biology, 2017, 174, 84-89.	1.7	29
17	Diversity of plasmids and Tn1546-type transposons among VanA Enterococcus faecium in Poland. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 313-328.	1.3	38
18	Invasive enterococcal infections in Poland: the current epidemiological situation. European Journal of Clinical Microbiology and Infectious Diseases, 2016, 35, 847-856.	1.3	20

#	Article	IF	CITATIONS
19	Multilevel population genetic analysis of <i>vanA</i> and <i>vanB Enterococcus faecium</i> causing nosocomial outbreaks in 27 countries (1986–2012). Journal of Antimicrobial Chemotherapy, 2016, 71, 3351-3366.	1.3	129
20	Etiology of parapneumonic effusion and pleural empyema in children. The role of conventional and molecular microbiological tests Respiratory Medicine, 2016, 116, 28-33.	1.3	49
21	Streptococcus suis in invasive human infections in Poland: clonality and determinants of virulence and antimicrobial resistance. European Journal of Clinical Microbiology and Infectious Diseases, 2016, 35, 917-925.	1.3	46
22	Recent trends in epidemiology of invasive pneumococcal disease in Poland. European Journal of Clinical Microbiology and Infectious Diseases, 2015, 34, 779-787.	1.3	18
23	Comprehensive molecular, genomic and phenotypic analysis of a major clone of Enterococcus faecalis MLST ST40. BMC Genomics, 2015, 16, 175.	1.2	33
24	Investigating the mobilome in clinically important lineages of Enterococcus faecium and Enterococcus faecalis. BMC Genomics, 2015, 16, 282.	1.2	82
25	Molecular Analysis of VanA Outbreak of <i>Enterococcus faecium</i> in Two Warsaw Hospitals: The Importance of Mobile Genetic Elements. BioMed Research International, 2014, 2014, 1-12.	0.9	32
26	Functional validation of putative toxin-antitoxin genes from the Gram-positive pathogen Streptococcus pneumoniae: phd-doc is the fourth bona-fide operon. Frontiers in Microbiology, 2014, 5, 677.	1.5	34
27	Drug-resistant and hospital-associated Enterococcus faecium from wastewater, riverine estuary and anthropogenically impacted marine catchment basin. BMC Microbiology, 2014, 14, 66.	1.3	50
28	Global Phylogenomic Analysis of Nonencapsulated <i>Streptococcus pneumoniae </i> Reveals a Deep-Branching Classic Lineage That Is Distinct from Multiple Sporadic Lineages. Genome Biology and Evolution, 2014, 6, 3281-3294.	1.1	63
29	High abundance and diversity of antimicrobial resistance determinants among early vancomycin-resistant Enterococcus faecium in Poland. European Journal of Clinical Microbiology and Infectious Diseases, 2013, 32, 1193-1203.	1.3	21
30	Abundance and diversity of plasmid-associated genes among clinical isolates of Enterococcus faecalis. Plasmid, 2013, 70, 329-342.	0.4	27
31	Comparative Population Analysis of Klebsiella pneumoniae Strains with Extended-Spectrum \hat{I}^2 -Lactamases Colonizing Patients in Rehabilitation Centers in Four Countries. Antimicrobial Agents and Chemotherapy, 2013, 57, 1992-1997.	1.4	49
32	Insight into antimicrobial susceptibility and population structure of contemporary human Enterococcus faecalis isolates from Europe. Journal of Antimicrobial Chemotherapy, 2012, 67, 551-558.	1.3	102
33	Efficiency of the Cepheid Xpert vanA/vanB assay for screening of colonization with vancomycin-resistant enterococci during hospital outbreak. Antonie Van Leeuwenhoek, 2012, 101, 671-675.	0.7	18
34	Nosocomial outbreak of Streptococcus pneumoniae Spain9V‑ST156‑14 clone in a pulmonary diseases ward. Polish Archives of Internal Medicine, 2012, 122, 361-366.	0.3	5
35	Evolution and Spread of a Multidrug-Resistant Proteus mirabilis Clone with Chromosomal AmpC-Type Cephalosporinases in Europe. Antimicrobial Agents and Chemotherapy, 2011, 55, 2735-2742.	1.4	52
36	The current status of invasive pneumococcal disease in Poland. Vaccine, 2011, 29, 2199-2205.	1.7	36

#	Article	IF	CITATIONS
37	Gelatinase-Associated Phenotypes and Genotypes Among Clinical Isolates of Enterococcus faecalis in Poland. Polish Journal of Microbiology, 2011, 60, 287-292.	0.6	17
38	Comparison of Multilocus Variable-Number Tandem-Repeat Analysis with Multilocus Sequence Typing and Pulsed-Field Gel Electrophoresis for Enterococcus faecalis. Polish Journal of Microbiology, 2011, 60, 335-339.	0.6	2
39	Gelatinase-associated phenotypes and genotypes among clinical isolates of Enterococcus faecalis in Poland. Polish Journal of Microbiology, 2011, 60, 287-92.	0.6	5
40	Comparison of multilocus variable-number tandem-repeat analysis with multilocus sequence typing and pulsed-field gel electrophoresis for Enterococcus faecalis. Polish Journal of Microbiology, 2011, 60, 335-9.	0.6	0
41	Expansion and Evolution of the <i>Streptococcus pneumoniae</i> Spain ^{9V} -ST156 Clonal Complex in Poland. Antimicrobial Agents and Chemotherapy, 2010, 54, 1720-1727.	1.4	27
42	Population structure, virulence factors and resistance determinants of invasive, non-invasive and colonizing Streptococcus agalactiae in Poland. Journal of Antimicrobial Chemotherapy, 2010, 65, 1907-1914.	1.3	52
43	First report of Streptococcus pneumoniae serotype 6D isolates from invasive infections. Vaccine, 2010, 28, 6406-6407.	1.7	21
44	The relBE2Spn Toxin-Antitoxin System of Streptococcus pneumoniae: Role in Antibiotic Tolerance and Functional Conservation in Clinical Isolates. PLoS ONE, 2010, 5, e11289.	1.1	31
45	Complex Nature of Enterococcal Pheromone-Responsive Plasmids. Polish Journal of Microbiology, 2010, 59, 79-87.	0.6	28
46	Molecular Survey of \hat{l}^2 -Lactamases Conferring Resistance to Newer \hat{l}^2 -Lactams in <i>Enterobacteriaceae</i> Isolates from Polish Hospitals. Antimicrobial Agents and Chemotherapy, 2008, 52, 2449-2454.	1.4	86
47	Highly Variable Penicillin Resistance Determinants PBP 2x, PBP 2b, and PBP 1a in Isolates of Two Streptococcus pneumoniae Clonal Groups, Poland 23F -16 and Poland 6B -20. Antimicrobial Agents and Chemotherapy, 2008, 52, 1021-1027.	1.4	22
48	Macrolide resistance among invasive Streptococcus pneumoniae in Slovenia. Journal of Antimicrobial Chemotherapy, 2008, 62, 628-629.	1.3	2
49	Clonal Diversity and Resistance Mechanisms in Tetracycline-Nonsusceptible Streptococcus pneumoniae Isolates in Poland. Antimicrobial Agents and Chemotherapy, 2007, 51, 1155-1163.	1.4	26
50	Phenotypic and Molecular Analysis of Penicillin-Nonsusceptible Streptococcus pneumoniae Isolates in Poland. Antimicrobial Agents and Chemotherapy, 2007, 51, 40-47.	1.4	19
51	Hospital outbreak of vancomycin-resistant enterococci caused by a single clone of Enterococcus raffinosus and several clones of Enterococcus faecium. Clinical Microbiology and Infection, 2007, 13, 893-901.	2.8	33
52	Multilocus Sequence Types, Serotypes, and Variants of the Surface Antigen PspA in Streptococcus pneumoniae Isolates from Meningitis Patients in Poland. Vaccine Journal, 2006, 13, 139-144.	3.2	21
53	Group A Streptococci from Invasive-Disease Episodes in Poland Are Remarkably Divergent at the Molecular Level. Journal of Clinical Microbiology, 2006, 44, 3975-3979.	1.8	38
54	High Genetic Diversity of Ciprofloxacin-Nonsusceptible Isolates of Streptococcus pneumoniae in Poland. Antimicrobial Agents and Chemotherapy, 2005, 49, 2126-2129.	1.4	4

#	Article	IF	CITATIONS
55	A rapid increase in macrolide resistance in Streptococcus pyogenes isolated in Poland during 1996–2002. Journal of Antimicrobial Chemotherapy, 2004, 54, 828-831.	1.3	42
56	Four Variants of the Citrobacter freundii AmpC-Type Cephalosporinases, Including Novel Enzymes CMY-14 and CMY-15, in a Proteus mirabilis Clone Widespread in Poland. Antimicrobial Agents and Chemotherapy, 2004, 48, 4136-4143.	1.4	42
57	Characteristics of Streptococcus pneumoniae , Haemophilus influenzae , and Moraxella catarrhalis Isolated from the Nasopharynges of Asymptomatic Children and Molecular Analysis of S. pneumoniae and H. influenzae Strain Replacement in the Nasopharynx. Journal of Clinical Microbiology, 2004, 42, 3942-3949.	1.8	59
58	Molecular Epidemiology of Serratia marcescens in Two Hospitals in Danzig, Poland, over a 5-Year Period. Journal of Clinical Microbiology, 2004, 42, 3108-3116.	1.8	23
59	Identification of Neisseria meningitidis sequence type 66 in Poland. Clinical Microbiology and Infection, 2004, 10, 848-850.	2.8	3
60	Identification of Multidrug-ResistantStreptococcus pneumoniaeStrains Isolated in Poland by Multilocus Sequence Typing. Microbial Drug Resistance, 2003, 9, 81-86.	0.9	10
61	Two Different Extended-Spectrum Â-Lactamases (ESBLs) in One of the First ESBL-Producing Salmonella Isolates in Poland. Journal of Clinical Microbiology, 2002, 40, 1095-1097.	1.8	49
62	Proteins attached to viral genomes are multifunctional. Advances in Virus Research, 2001, 57, 185-262.	0.9	29
63	Mutational analysis of the proteinase function of Potato leafroll virus. Journal of General Virology, 2001, 82, 1517-1527.	1.3	28
64	The ORFO product of Potato leafroll virus is indispensable for virus accumulation. Journal of General Virology, 2001, 82, 1529-1532.	1.3	37
65	Effect of genomic and subgenomic leader sequences of potato leafroll virus on gene expression. FEBS Letters, 2000, 484, 33-36.	1.3	12
66	Sulfate and thiosulfate transport in Escherichia coli K-12: evidence for a functional overlapping of sulfate- and thiosulfate-binding proteins. Journal of Bacteriology, 1995, 177, 4134-4136.	1.0	91