
Fangxu Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7316563/publications.pdf Version: 2024-02-01

ΕλΝΟΧΗ ΥΛΝΟ

#	Article	IF	CITATIONS
1	Ternary NiCo ₂ P <i>_x</i> Nanowires as pHâ€Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1605502.	21.0	544
2	Organic crystalline materials in flexible electronics. Chemical Society Reviews, 2019, 48, 1492-1530.	38.1	314
3	2D Organic Materials for Optoelectronic Applications. Advanced Materials, 2018, 30, 1702415.	21.0	266
4	Cocrystal Engineering: A Collaborative Strategy toward Functional Materials. Advanced Materials, 2019, 31, e1902328.	21.0	245
5	Intermolecular Chargeâ€Transfer Interactions Facilitate Twoâ€Photon Absorption in Styrylpyridine–Tetracyanobenzene Cocrystals. Angewandte Chemie - International Edition, 2017, 56, 7831-7835.	13.8	146
6	Molecular cocrystals: design, charge-transfer and optoelectronic functionality. Physical Chemistry Chemical Physics, 2018, 20, 6009-6023.	2.8	143
7	Space-Confined Strategy toward Large-Area Two-Dimensional Single Crystals of Molecular Materials. Journal of the American Chemical Society, 2018, 140, 5339-5342.	13.7	132
8	A Robust Nonvolatile Resistive Memory Device Based on a Freestanding Ultrathin 2D Imine Polymer Film. Advanced Materials, 2019, 31, e1902264.	21.0	117
9	Organic Fieldâ€Effect Transistor for Energyâ€Related Applications: Lowâ€Powerâ€Consumption Devices, Nearâ€Infrared Phototransistors, and Organic Thermoelectric Devices. Advanced Energy Materials, 2018, 8, 1801003.	19.5	95
10	Scalable Fabrication of Highly Crystalline Organic Semiconductor Thin Film by Channelâ€Restricted Screen Printing toward the Low ost Fabrication of Highâ€Performance Transistor Arrays. Advanced Materials, 2019, 31, e1807975.	21.0	93
11	Thermally Activated Delayed Fluorescence in an Organic Cocrystal: Narrowing the Singlet–Triplet Energy Gap via Charge Transfer. Angewandte Chemie - International Edition, 2019, 58, 11311-11316.	13.8	76
12	Verticalâ€organicâ€nanocrystalâ€orrays for crossbar memristors with tuning switching dynamics toward neuromorphic computing. SmartMat, 2021, 2, 99-108.	10.7	73
13	Stimuli-responsive behaviors of organic charge transfer cocrystals: recent advances and perspectives. Materials Chemistry Frontiers, 2020, 4, 715-728.	5.9	72
14	Low-Voltage Organic Single-Crystal Field-Effect Transistor with Steep Subthreshold Slope. ACS Applied Materials & Interfaces, 2018, 10, 25871-25877.	8.0	50
15	A "Phase Separation―Molecular Design Strategy Towards Largeâ€Area 2D Molecular Crystals. Advanced Materials, 2019, 31, e1901437.	21.0	44
16	Pyridine-bridged diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells. Polymer Chemistry, 2015, 6, 4775-4783.	3.9	34
17	A Fe–Ni ₅ P ₄ /Fe–Ni ₂ P heterojunction electrocatalyst for highly efficient solar-to-hydrogen generation. Journal of Materials Chemistry A, 2021, 9, 1221-1229.	10.3	33
18	Intermolecular Chargeâ€Transfer Interactions Facilitate Twoâ€Photon Absorption in Styrylpyridine–Tetracyanobenzene Cocrystals. Angewandte Chemie, 2017, 129, 7939-7943.	2.0	32

Fangxu Yang

#	Article	IF	CITATIONS
19	Freeâ€Standing 2D Hexagonal Aluminum Nitride Dielectric Crystals for Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, e1801891.	21.0	32
20	Negative Phototransistors with Ultrahigh Sensitivity and Weak‣ight Detection Based on 1D/2D Molecular Crystal p–n Heterojunctions and their Application in Light Encoders. Advanced Materials, 2022, 34, e2201364.	21.0	26
21	High Hole Mobility in Longâ€Range Ordered 2D Lead Sulfide Nanocrystal Monolayer Films. Advanced Functional Materials, 2016, 26, 5182-5188.	14.9	25
22	Mass Production of Nanogap Electrodes toward Robust Resistive Random Access Memory. Advanced Materials, 2016, 28, 8227-8233.	21.0	20
23	Unveiling the Switching Riddle of Silver Tetracyanoquinodimethane Towards Novel Planar Singleâ€Crystalline Electrochemical Metallization Memories. Advanced Materials, 2016, 28, 7094-7100.	21.0	17
24	Ligand effects on electronic and optoelectronic properties of two-dimensional PbS necking percolative superlattices. Nano Research, 2017, 10, 1249-1257.	10.4	16
25	Cocrystal engineering for constructing two-photon absorption materials by controllable intermolecular interactions. Journal of Materials Chemistry C, 2022, 10, 2562-2568.	5.5	15
26	Thermally Activated Delayed Fluorescence in an Organic Cocrystal: Narrowing the Singlet–Triplet Energy Gap via Charge Transfer. Angewandte Chemie, 2019, 131, 11433.	2.0	13
27	Highly Efficient Charge Transport in a Quasiâ€Monolayer Semiconductor on Pure Polymer Dielectric. Advanced Functional Materials, 2020, 30, 1907153.	14.9	12
28	2D molecular crystal templated organic p–n heterojunctions for high-performance ambipolar organic field-effect transistors. Journal of Materials Chemistry C, 2021, 9, 5758-5764.	5.5	12
29	Few-layered organic single-crystalline heterojunctions for high-performance phototransistors. Nano Research, 2022, 15, 2667-2673.	10.4	12
30	Organic Optoelectronics: 2D Organic Materials for Optoelectronic Applications (Adv. Mater. 2/2018). Advanced Materials, 2018, 30, 1870012.	21.0	11
31	Few-layered two-dimensional molecular crystals for organic artificial visual memories with record-high photoresponse. Journal of Materials Chemistry C, 2021, 9, 8834-8841.	5.5	10
32	Cocrystal engineering: Tuning the charge transfer excitons for highly sensitive luminescent switching materials under multiple stimuli. Science China Materials, 2022, 65, 1320-1328.	6.3	10
33	Electrocatalysts: Ternary NiCo ₂ P <i>_x</i> Nanowires as pHâ€Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction (Adv. Mater. 9/2017). Advanced Materials, 2017, 29, .	21.0	8
34	p-n heterojunctions composed of two-dimensional molecular crystals for high-performance ambipolar organic field-effect transistors. APL Materials, 2021, 9, 051108.	5.1	8
35	Low-power high-mobility organic single-crystal field-effect transistor. Science China Materials, 2022, 65, 2779-2785.	6.3	6
36	Soft template-assisted self-assembly: a general strategy toward two-dimensional molecular crystals for high-performance organic field-effect transistors. Journal of Materials Chemistry C, 2022, 10, 2575-2580.	5.5	5

Fangxu Yang

#	Article	IF	CITATIONS
37	Efficient energy transfer in organic light-emitting transistor with tunable wavelength. Nano Research, 2022, 15, 3647-3652.	10.4	5
38	Highly Efficient Contact Doping for High-Performance Organic UV-Sensitive Phototransistors. Crystals, 2022, 12, 651.	2.2	5
39	Organic Single Crystals: A "Phase Separation―Molecular Design Strategy Towards Largeâ€Area 2D Molecular Crystals (Adv. Mater. 35/2019). Advanced Materials, 2019, 31, 1970251.	21.0	2