

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7316221/publications.pdf Version: 2024-02-01

TAOLI

#	Article	IF	CITATIONS
1	Stable Solvent-Derived Inorganic-Rich Solid Electrolyte Interphase (SEI) for High-Voltage Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 28014-28020.	4.0	14
2	New Insights on the Good Compatibility of Ether-Based Localized High-Concentration Electrolyte with Lithium Metal. , 2021, 3, 838-844.		50
3	Stable Anionâ€Derived Solid Electrolyte Interphase in Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 22865-22869.	1.6	32
4	Stable Anionâ€Đerived Solid Electrolyte Interphase in Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 22683-22687.	7.2	125
5	Decoupling the degradation factors of Ni-rich NMC/Li metal batteries using concentrated electrolytes. Energy Storage Materials, 2021, 41, 222-229.	9.5	16
6	A Sustainable Solid Electrolyte Interphase for Highâ€Energyâ€Density Lithium Metal Batteries Under Practical Conditions. Angewandte Chemie, 2020, 132, 3278-3283.	1.6	60
7	A Sustainable Solid Electrolyte Interphase for Highâ€Energyâ€Density Lithium Metal Batteries Under Practical Conditions. Angewandte Chemie - International Edition, 2020, 59, 3252-3257.	7.2	221
8	Mesoporous Graphene Hosts for Dendrite-Free Lithium Metal Anode in Working Rechargeable Batteries. Transactions of Tianjin University, 2020, 26, 127-134.	3.3	33
9	Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries. Joule, 2019, 3, 2647-2661.	11.7	432
10	Dendrite-free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior. Nano Research, 2019, 12, 2224-2229.	5.8	36
11	Advanced metal sulfide anode for potassium ion batteries. Journal of Energy Chemistry, 2018, 27, 373-374.	7.1	68
12	Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Metals, 2018, 37, 449-458.	3.6	86
13	A novel hierarchical precursor of densely integrated hydroxide nanoflakes on oxide microspheres toward high-performance layered Ni-rich cathode for lithium ion batteries. Materials Chemistry Frontiers, 2018, 2, 1822-1828.	3.2	14
14	Self-templated formation of hierarchical NiCo 2 O 4 yolk-shell microspheres with enhanced electrochemical properties. Electrochimica Acta, 2017, 244, 154-161.	2.6	20
15	A new design concept for preparing nickel-foam-supported metal oxide microspheres with superior electrochemical properties. Journal of Materials Chemistry A, 2017, 5, 13469-13474.	5.2	91
16	Distinct impact of cobalt salt type on the morphology, microstructure, and electrochemical properties of Co3O4 synthesized by ultrasonic spray pyrolysis. Journal of Alloys and Compounds, 2017, 696, 836-843.	2.8	29
17	A short process for the efficient utilization of transition-metal chlorides in lithium-ion batteries: A case of Ni0.8Co0.1Mn0.1O1.1 and LiNi0.8Co0.1Mn0.1O2. Journal of Power Sources, 2017, 342, 495-503.	4.0	203
18	Cave-embedded porous Mn2O3 hollow microsphere as anode material for lithium ion batteries. Electrochimica Acta, 2017, 247, 795-802.	2.6	25

Tao Li

#	Article	IF	CITATIONS
19	A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion. Chinese Chemical Letters, 2017, 28, 2180-2194.	4.8	176
20	Synthesis of nanoparticles-assembled Co 3 O 4 microspheres as anodes for Li-ion batteries by spray pyrolysis of CoCl 2 solution. Electrochimica Acta, 2016, 209, 456-463.	2.6	36
21	One-step synthesis of Li-doped NiO as high-performance anode material for lithium ion batteries. Ceramics International, 2016, 42, 14565-14572.	2.3	42
22	Robust synthesis of hierarchical mesoporous hybrid NiO–MnCo2O4 microspheres and their application in Lithium-ion batteries. Electrochimica Acta, 2016, 191, 392-400.	2.6	50
23	Electrochemical properties of LiNi0.6Co0.2Mn0.2O2 as cathode material for Li-ion batteries prepared by ultrasonic spray pyrolysis. Materials Letters, 2015, 159, 39-42.	1.3	32
24	A novel NiCo ₂ O ₄ anode morphology for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 11970-11975.	5.2	127