Audrey Gallud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7316182/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 333-351.	3.3	322
2	Biodegradable Ethyleneâ€Bis(Propyl)Disulfideâ€Based Periodic Mesoporous Organosilica Nanorods and Nanospheres for Efficient Inâ€Vitro Drug Delivery. Advanced Materials, 2014, 26, 6174-6180.	21.0	212
3	Twoâ€Photon Excitation of Porphyrinâ€Functionalized Porous Silicon Nanoparticles for Photodynamic Therapy. Advanced Materials, 2014, 26, 7643-7648.	21.0	131
4	Twoâ€Photonâ€Triggered Drug Delivery via Fluorescent Nanovalves. Small, 2014, 10, 1752-1755.	10.0	106
5	Twoâ€Photonâ€īriggered Drug Delivery in Cancer Cells Using Nanoimpellers. Angewandte Chemie - International Edition, 2013, 52, 13813-13817.	13.8	94
6	Mixed Periodic Mesoporous Organosilica Nanoparticles and Core–Shell Systems, Application to in Vitro Two-Photon Imaging, Therapy, and Drug Delivery. Chemistry of Materials, 2014, 26, 7214-7220.	6.7	77
7	Delivery of Oligonucleotide Therapeutics: Chemical Modifications, Lipid Nanoparticles, and Extracellular Vesicles. ACS Nano, 2021, 15, 13993-14021.	14.6	74
8	Multifunctionalized mesoporous silica nanoparticles for the in vitro treatment of retinoblastoma: Drug delivery, one and two-photon photodynamic therapy. International Journal of Pharmaceutics, 2012, 432, 99-104.	5.2	67
9	Anionic porphyrin-grafted porous silicon nanoparticles for photodynamic therapy. Chemical Communications, 2013, 49, 4202.	4.1	65
10	Enhanced Two-Photon Fluorescence Imaging and Therapy of Cancer Cells via Gold@Bridged Silsesquioxane Nanoparticles. Small, 2015, 11, 295-299.	10.0	59
11	A 3D co-culture microtissue model of the human placenta for nanotoxicity assessment. Nanoscale, 2016, 8, 17322-17332.	5.6	58
12	Macrophage activation status determines the internalization of mesoporous silica particles of different sizes: Exploring the role of different pattern recognition receptors. Biomaterials, 2017, 121, 28-40.	11.4	58
13	Cationic gold nanoparticles elicit mitochondrial dysfunction: a multi-omics study. Scientific Reports, 2019, 9, 4366.	3.3	54
14	A high-throughput Galectin-9 imaging assay for quantifying nanoparticle uptake, endosomal escape and functional RNA delivery. Communications Biology, 2021, 4, 211.	4.4	45
15	Composition and cytotoxic activity of essential oils from Xylopia aethiopica (Dunal) A. Rich, Xylopia Complementary and Alternative Medicine, 2014, 14, 125.	3.7	42
16	Hybrid Mesoporous Silica Nanoparticles with pHâ€Operated and Complementary Hâ€Bonding Caps as an Autonomous Drugâ€Delivery System. Chemistry - A European Journal, 2014, 20, 9372-9380.	3.3	40
17	Imidazopyridine-fused [1,3]-diazepinones: Synthesis and antiproliferative activity. European Journal of Medicinal Chemistry, 2014, 75, 382-390.	5.5	40
18	Cytotoxic and Proinflammatory Effects of Metal-Based Nanoparticles on THP-1 Monocytes Characterized by Combined Proteomics Approaches. Journal of Proteome Research, 2017, 16, 689-697.	3.7	34

AUDREY GALLUD

#	Article	IF	CITATIONS
19	Tumor selective uptake of drug-nanodiamond complexes improves therapeutic outcome in pancreatic cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 112-121.	3.3	31
20	Stealth Fluorescence Labeling for Live Microscopy Imaging of mRNA Delivery. Journal of the American Chemical Society, 2021, 143, 5413-5424.	13.7	27
21	Correlation between Cellular Uptake and Cytotoxicity of Fragmented α-Synuclein Amyloid Fibrils Suggests Intracellular Basis for Toxicity. ACS Chemical Neuroscience, 2020, 11, 233-241.	3.5	26
22	Multiparametric Profiling of Engineered Nanomaterials: Unmasking the Surface Coating Effect. Advanced Science, 2020, 7, 2002221.	11.2	24
23	Antidiabetic potential of two medicinal plants used in Gabonese folk medicine. BMC Complementary and Alternative Medicine, 2016, 16, 71.	3.7	18
24	Imidazopyridine-fused [1,3]-diazepinones part 2: Structure-activity relationships and antiproliferative activity against melanoma cells. European Journal of Medicinal Chemistry, 2017, 125, 1225-1234.	5.5	16
25	Small sized mesoporous silica nanoparticles functionalized with mannose for retinoblastoma cell imaging. RSC Advances, 2014, 4, 37171.	3.6	15
26	Keeping it small: towards a molecular definition of nanotoxicology. European Journal of Nanomedicine, 2015, 7, .	0.6	15
27	A Designed 5â€Fluorouracilâ€Based Bridged Silsesquioxane as an Autonomous Acidâ€Triggered Drugâ€Delivery System. Chemistry - A European Journal, 2013, 19, 12806-12814.	3.3	14
28	Cell surface proteoglycan-mediated uptake and accumulation of the Alzheimer's disease peptide Aβ(1–42). Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2204-2214.	2.6	13
29	Combination treatment with proteasome inhibitors and antiestrogens has a synergistic effect mediated by p21WAF1 in estrogen receptor-positive breast cancer. Oncology Reports, 2016, 36, 1127-1134.	2.6	9
30	Sequential delivery of synergistic drugs by silica nanocarriers for enhanced tumour treatment. Journal of Materials Chemistry B, 2020, 8, 1472-1480.	5.8	7
31	Profiling of Sub-Lethal in Vitro Effects of Multi-Walled Carbon Nanotubes Reveals Changes in Chemokines and Chemokine Receptors. Nanomaterials, 2021, 11, 883.	4.1	6
32	Fluorescent base analogues in gapmers enable stealth labeling of antisense oligonucleotide therapeutics. Scientific Reports, 2021, 11, 11365.	3.3	5
33	Recent nanomedicine articles of outstanding interest. Nanomedicine, 2015, 10, 1859-1861.	3.3	2