
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7316053/publications.pdf Version: 2024-02-01

MIRAL DIZDAROCUL

#	Article	IF	CITATIONS
1	Oxidative DNA damage: mechanisms, mutation, and disease. FASEB Journal, 2003, 17, 1195-1214.	0.2	2,603
2	Linking uracil base excision repair and 5-fluorouracil toxicity in yeast. Nucleic Acids Research, 2006, 34, 140-151.	6.5	1,877
3	Oxidative DNA damage and disease: induction, repair and significance. Mutation Research - Reviews in Mutation Research, 2004, 567, 1-61.	2.4	1,102
4	Free radical-induced damage to DNA: mechanisms and measurement 1,2 1This article is part of a series of reviews on "Oxidative DNA Damage and Repair.―The full list of papers may be found on the homepage of the journal. 2Guest Editor: Miral Dizdaroglu. Free Radical Biology and Medicine, 2002, 32, 1102-1115.	1.3	814
5	Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry, 1990, 29, 7024-7032.	1.2	735
6	Substrate specificity of the Escherichia coli Fpg protein formamidopyrimidine-DNA glycosylase: excision of purine lesions in DNA produced by ionizing radiation or photosensitization. Biochemistry, 1992, 31, 106-110.	1.2	613
7	Mechanisms of free radical-induced damage to DNA. Free Radical Research, 2012, 46, 382-419.	1.5	543
8	Oxidative damage to DNA in mammalian chromatin. Mutation Research - DNAging, 1992, 275, 331-342.	3.3	488
9	Chemical determination of free radical-induced damage to DNA. Free Radical Biology and Medicine, 1991, 10, 225-242.	1.3	477
10	ldentification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3523-3528.	3.3	459
11	Copper Oxide Nanoparticle Mediated DNA Damage in Terrestrial Plant Models. Environmental Science & Technology, 2012, 46, 1819-1827.	4.6	424
12	Substrate specificity of the Escherichia coli endonuclease III: Excision of thymine- and cytosine-derived lesions in DNA produced by radiation-generated free radicals. Biochemistry, 1993, 32, 12105-12111.	1.2	288
13	Modification of DNA bases in mammalian chromatin by radiation-generated free radicals. Biochemistry, 1990, 29, 7876-7882.	1.2	272
14	DNA base modifications in chromatin of human cancerous tissues. FEBS Letters, 1992, 309, 193-198.	1.3	245
15	Damage, Repair, and Mutagenesis in Nuclear Genes after Mouse Forebrain Ischemia–Reperfusion. Journal of Neuroscience, 1996, 16, 6795-6806.	1.7	234
16	Formation of 8-hydroxyguanine moiety in deoxyribonucleic acid on .gammairradiation in aqueous solution. Biochemistry, 1985, 24, 4476-4481.	1.2	229
17	New functions of XPC in the protection of human skin cells from oxidative damage. EMBO Journal, 2006, 25, 4305-4315.	3.5	227
18	Oxidatively induced DNA damage: Mechanisms, repair and disease. Cancer Letters, 2012, 327, 26-47.	3.2	223

#	Article	IF	CITATIONS
19	Commentary the Measurement of Oxidative Damage to DNA by HPLC and GC/MS Techniques. Free Radical Research Communications, 1992, 16, 75-87.	1.8	213
20	Oxidative DNA base damage and antioxidant enzyme activities in human lung cancer. FEBS Letters, 1994, 341, 59-64.	1.3	206
21	Regulation of reactive oxygen species, DNA damage and c-Myc function by peroxiredoxin 1. Oncogene, 2005, 24, 8038-8050.	2.6	205
22	[1] Chemical determination of oxidative DNA damage by gas chromatography-mass spectrometry. Methods in Enzymology, 1994, 234, 3-16.	0.4	194
23	β-d-glucosyl-hydroxymethyluracil: A novel modified base present in the DNA of the parasitic protozoan T. brucei. Cell, 1993, 75, 1129-1136.	13.5	191
24	Oxidatively induced DNA damage and its repair in cancer. Mutation Research - Reviews in Mutation Research, 2015, 763, 212-245.	2.4	191
25	DNA base modifications in renal chromatin of wistar rats treated with a renal carcinogen, ferric nitrilotriacetate. International Journal of Cancer, 1994, 57, 123-128.	2.3	174
26	Repair of Formamidopyrimidines in DNA Involves Different Glycosylases. Journal of Biological Chemistry, 2005, 280, 40544-40551.	1.6	174
27	The mouse ortholog of NEIL3 is a functional DNA glycosylase in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4925-4930.	3.3	169
28	Strand breaks and sugar release by .gammairradiation of DNA in aqueous solution. Journal of the American Chemical Society, 1975, 97, 2277-2278.	6.6	164
29	Characterization of free radical-induced base damage in DNA at biologically relevant levels. Analytical Biochemistry, 1986, 156, 182-188.	1.1	163
30	Base-excision repair of oxidative DNA damage by DNA glycosylases. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 591, 45-59.	0.4	159
31	Application of capillary gas chromatography-mass spectrometry to chemical characterization of radiation-induced base damage of DNA: Implications for assessing DNA repair processes. Analytical Biochemistry, 1985, 144, 593-603.	1.1	156
32	Primary fibroblasts of Cockayne syndrome patients are defective in cellular repair of 8â€hydroxyguanine and 8â€hydroxyadenine resulting from oxidative stress. FASEB Journal, 2003, 17, 668-674.	0.2	140
33	The Cockayne Syndrome Group B Gene Product Is Involved in General Genome Base Excision Repair of 8-Hydroxyguanine in DNA. Journal of Biological Chemistry, 2001, 276, 45772-45779.	1.6	138
34	Polyamines stimulate the formation of mutagenic 1,N2-propanodeoxyguanosine adducts from acetaldehyde. Nucleic Acids Research, 2005, 33, 3513-3520.	6.5	128
35	Chemical nature of in vivo DNA base damage in hydrogen peroxide-treated mammalian cells. Archives of Biochemistry and Biophysics, 1991, 285, 388-390.	1.4	123
36	Hydrogen Peroxide-Induced Base Damage in Deoxyribonucleic Acid. Radiation Research, 1990, 121, 338.	0.7	119

#	Article	IF	CITATIONS
37	Monomeric Base Damage Products from Guanine, Adenine, and Thymine Induced by Exposure of DNA to Ultraviolet Radiation. Biochemistry, 1995, 34, 737-742.	1.2	119
38	Ni(II) Specifically Cleaves the C-Terminal Tail of the Major Variant of Histone H2A and Forms an Oxidative Damage-Mediating Complex with the Cleaved-Off Octapeptide. Chemical Research in Toxicology, 2000, 13, 616-624.	1.7	119
39	Hydroxyl radical is a significant player in oxidative DNA damage <i>in vivo</i> . Chemical Society Reviews, 2021, 50, 8355-8360.	18.7	114
40	Saccharomyces cerevisiaeNtg1p and Ntg2p:Â Broad SpecificityN-Glycosylases for the Repair of Oxidative DNA Damage in the Nucleus and Mitochondriaâ€. Biochemistry, 1999, 38, 11298-11306.	1.2	110
41	Measurement of 8-hydroxy-2'-deoxyguanosine in DNA by high-performance liquid chromatography-mass spectrometry: comparison with measurement by gas chromatography-mass spectrometry. Nucleic Acids Research, 2001, 29, 12e-12.	6.5	109
42	8,5′-Cyclopurine-2′-deoxynucleosides in DNA: Mechanisms of formation, measurement, repair and biological effects. DNA Repair, 2008, 7, 1413-1425.	1.3	104
43	Chemical nature of DNA-protein cross-links produced in mammalian chromatin by hydrogen peroxide in the presence of iron or copper ions. Biochemistry, 1991, 30, 4873-4879.	1.2	103
44	The use of capillary gas chromatography—mass spectrometry for identification of radiation-induced DNA base damage and DNA base—amino acid cross-links. Journal of Chromatography A, 1984, 295, 103-121.	1.8	102
45	Formamidopyrimidines in DNA: Mechanisms of formation, repair, and biological effects. Free Radical Biology and Medicine, 2008, 45, 1610-1621.	1.3	102
46	Targeted deletion of the genes encoding NTH1 and NEIL1 DNA N-glycosylases reveals the existence of novel carcinogenic oxidative damage to DNA. DNA Repair, 2009, 8, 786-794.	1.3	101
47	Structure of a hydroxyl radical-induced DNA-protein crosslink involving thymine and tyrosine in nucleohistone. Biochemistry, 1989, 28, 3625-3628.	1.2	100
48	Oxidative DNA base damage and antioxidant enzyme levels in childhood acute lymphoblastic leukemia. FEBS Letters, 1997, 416, 286-290.	1.3	97
49	Excision of Products of Oxidative DNA Base Damage by Human NTH1 Protein. Biochemistry, 1999, 38, 243-246.	1.2	97
50	DNA Base Damage in Chromatin of $\hat{1}^3$ -Irradiated Cultured Human Cells. Free Radical Research Communications, 1992, 16, 259-273.	1.8	96
51	Novel Substrates ofEscherichia coliNth Protein and Its Kinetics for Excision of Modified Bases from DNA Damaged by Free Radicalsâ€. Biochemistry, 2000, 39, 5586-5592.	1.2	95
52	Cockayne Syndrome Group B Protein Stimulates Repair of Formamidopyrimidines by NEIL1 DNA Glycosylase. Journal of Biological Chemistry, 2009, 284, 9270-9279.	1.6	92
53	Effect of DNA Conformation on the Hydroxyl Radical-induced Formation of 8,5′-cyclopurine 2′-deoxyribonucleoside Residues in DNA. International Journal of Radiation Biology, 1988, 54, 195-204.	1.0	91
54	Hydroxyl radical induced cross-linking of cytosine and tyrosine in nucleohistone. Biochemistry, 1990, 29, 977-980.	1.2	89

#	Article	IF	CITATIONS
55	Nickel(II)-mediated oxidative DNA base damage in renal and hepatic chromatin of pregnant rats and their fetuses. Possible relevance to carcinogenesis. Chemical Research in Toxicology, 1992, 5, 809-815.	1.7	89
56	Mouse NEIL1 Protein Is Specific for Excision of 2,6-Diamino-4-hydroxy-5-formamidopyrimidine and 4,6-Diamino-5-formamidopyrimidine from Oxidatively Damaged DNA. Biochemistry, 2004, 43, 15909-15914.	1.2	89
57	The Cockayne Syndrome Group B Gene Product Is Involved in Cellular Repair of 8-Hydroxyadenine in DNA. Journal of Biological Chemistry, 2002, 277, 30832-30837.	1.6	88
58	Mass Spectrometric Assays for the Tandem Lesion 8,5â€~-Cyclo-2â€~-deoxyguanosine in Mammalian DNA. Biochemistry, 2002, 41, 3703-3711.	1.2	88
59	Characterization of a Novel 8-Oxoguanine-DNA Glycosylase Activity in Escherichia coli and Identification of the Enzyme as Endonuclease VIII. Journal of Biological Chemistry, 2000, 275, 27762-27767.	1.6	87
60	Treatment of wistar rats with a renal carcinogen, ferric nitrilotriacetate, causes dna-protein cross-linking between thymine and tyrosine in their renal chromatin. International Journal of Cancer, 1995, 62, 309-313.	2.3	85
61	DNA Base Damage by the Antitumor Agent 3-Amino-1,2,4-benzotriazine 1,4-Dioxide (Tirapazamine). Journal of the American Chemical Society, 2003, 125, 11607-11615.	6.6	85
62	Facts about the artifacts in the measurement of oxidative DNA base damage by gas chromatography-mass spectrometry. Free Radical Research, 1998, 29, 551-563.	1.5	83
63	Cellular repair of oxidatively induced DNA base lesions is defective in prostate cancer cell lines, PC-3 and DU-145. Carcinogenesis, 2004, 25, 1359-1370.	1.3	82
64	Formation of DNA-protein cross-links in cultured mammalian cells upon treatment with iron ions. Free Radical Biology and Medicine, 1995, 19, 897-902.	1.3	81
65	Identification and quantification of 8,5′-cyclo-2′-deoxy-adenosine in DNA by liquid chromatography/ mass spectrometry. Free Radical Biology and Medicine, 2001, 30, 774-784.	1.3	79
66	Characterization and Mechanism of Action of DrosophilaRibosomal Protein S3 DNA Glycosylase Activity for the Removal of Oxidatively Damaged DNA Bases. Journal of Biological Chemistry, 1997, 272, 32857-32860.	1.6	77
67	Oxidized guanine lesions and hOgg1 activity in lung cancer. Oncogene, 2005, 24, 4496-4508.	2.6	76
68	Substrate specificities and excision kinetics of DNA glycosylases involved in base-excision repair of oxidative DNA damage. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 531, 109-126.	0.4	72
69	Small Molecule Inhibitors of 8-Oxoguanine DNA Glycosylase-1 (OGG1). ACS Chemical Biology, 2015, 10, 2334-2343.	1.6	72
70	Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics. Mutation Research - Reviews in Mutation Research, 2017, 771, 99-127.	2.4	72
71	Enhancement by L-histidine of nickel(II)-induced DNA-protein cross-linking and oxidative DNA base damage in the rat kidney. Chemical Research in Toxicology, 1993, 6, 33-37.	1.7	71
72	Human Polymorphic Variants of the NEIL1 DNA Glycosylase. Journal of Biological Chemistry, 2007, 282, 15790-15798.	1.6	70

MIRAL DIZDAROGLU

#	Article	IF	CITATIONS
73	Accumulation of (5′S)-8,5′-cyclo-2′-deoxyadenosine in organs of Cockayne syndrome complementation group B gene knockout mice. DNA Repair, 2009, 8, 274-278.	1.3	66
74	Measurement of oxidatively induced DNA damage and its repair, by mass spectrometric techniques. Free Radical Research, 2015, 49, 525-548.	1.5	66
75	tertButyl hydroperoxide-mediated DNA base damage in cultured mammalian cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1994, 306, 35-44.	0.4	65
76	Complete release of (5'S)-8,5'-cyclo-2'-deoxyadenosine from dinucleotides, oligodeoxynucleotides and DNA, and direct comparison of its levels in cellular DNA with other oxidatively induced DNA lesions. Nucleic Acids Research, 2004, 32, e87-e87.	6.5	65
77	DNA base modifications and antioxidant enzyme activities in human benign prostatic hyperplasia. Free Radical Biology and Medicine, 1995, 18, 807-813.	1.3	64
78	DNA base modifications and membrane damage in cultured mammalian cells treated with iron ions. Free Radical Biology and Medicine, 1995, 18, 1013-1022.	1.3	64
79	Structure of a hydroxyl radical induced cross-link of thymine and tyrosine. Biochemistry, 1988, 27, 6353-6359.	1.2	59
80	A Major Role for Nonenzymatic Antioxidant Processes in the Radioresistance of Halobacterium salinarum. Journal of Bacteriology, 2011, 193, 1653-1662.	1.0	59
81	[55] Selected-ion mass spectrometry: Assays of oxidative DNA damage. Methods in Enzymology, 1990, 186, 530-544.	0.4	57
82	Structure of Hydroxyl Radical-induced DNA-protein Crosslinks in Calf Thymus Nucleohistone <i>in Vitro</i> . International Journal of Radiation Biology, 1988, 54, 445-459.	1.0	56
83	DNA-protein cross-linking between thymine and tyrosine in chromatin of γ-irradiated or H2O2-treated cultured human cells. Archives of Biochemistry and Biophysics, 1992, 297, 139-143.	1.4	53
84	The effect of experimental conditions on the levels of oxidatively modified bases in DNA as measured by gas chromatography-mass spectrometry:. Free Radical Biology and Medicine, 1999, 27, 370-380.	1.3	53
85	Measurement of oxidatively induced base lesions in liver from Wistar rats of different ages. Free Radical Biology and Medicine, 1999, 27, 456-462.	1.3	52
86	Lymphoblasts of Women with BRCA1 Mutations Are Deficient in Cellular Repair of 8,5â€~-Cyclopurine-2â€~-deoxynucleosides and 8-Hydroxy-2â€~-deoxyguanosine. Biochemistry, 2007, 46, 2488-2496.	1.2	52
87	Accumulation of Oxidatively Induced DNA Damage in Human Breast Cancer Cell Lines Following Treatment with Hydrogen Peroxide. Cell Cycle, 2007, 6, 1471-1477.	1.3	50
88	Measurement of formamidopyrimidines in DNA. Free Radical Biology and Medicine, 2008, 45, 1601-1609.	1.3	50
89	Evidence for the Involvement of DNA Repair Enzyme NEIL1 in Nucleotide Excision Repair of (5′ <i>R</i>)- and (5′ <i>S</i>)-8,5′-Cyclo-2′-deoxyadenosines. Biochemistry, 2010, 49, 1053-1055.	1.2	50
90	Radiation Chemistry of Carbohydrates, VI: γ-Radiolysis of Glucose in Deoxygenated N2O Saturated Aqueous Solution. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1975, 30, 416-425.	0.3	49

#	Article	IF	CITATIONS
91	Oxidative DNA Base Damage in Renal, Hepatic, and Pulmonary Chromatin of Rats after Intraperitoneal Injection of Cobalt(II) Acetate. Chemical Research in Toxicology, 1994, 7, 329-335.	1.7	49
92	Bisphenol A Promotes Cell Survival Following Oxidative DNA Damage in Mouse Fibroblasts. PLoS ONE, 2015, 10, e0118819.	1.1	49
93	Characterization of free radical-induced damage to DNA by the combined use of enzymatic hydrolysis and gas chromatography—mass spectrometry. Journal of Chromatography A, 1986, 367, 357-366.	1.8	46
94	DNA base modifications induced in isolated human chromatin by NADH dehydrogenase-catalyzed reduction of doxorubicin. Biochemistry, 1992, 31, 3500-3506.	1.2	46
95	Substrate Specificity ofSchizosaccharomyces pombeNth Protein for Products of Oxidative DNA Damage. Biochemistry, 1998, 37, 590-595.	1.2	46
96	Repair of oxidative DNA base lesions induced by fluorescent light is defective in xeroderma pigmentosum group A cells. Nucleic Acids Research, 1999, 27, 3153-3158.	6.5	46
97	Substrate Specificity and Excision Kinetics ofEscherichia coliEndonuclease VIII (Nei) for Modified Bases in DNA Damaged by Free Radicalsâ€. Biochemistry, 2001, 40, 12150-12156.	1.2	46
98	Structural and biochemical studies of a plant formamidopyrimidine-DNA glycosylase reveal why eukaryotic Fpg glycosylases do not excise 8-oxoguanine. DNA Repair, 2012, 11, 714-725.	1.3	46
99	Î ³ -Radiolyses of DNA in Oxygenated Aqueous Solution. Structure of an Alkali-Labile Site. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1977, 32, 1021-1022.	0.6	45
100	Oxidative DNA damage in polymorphonuclear leukocytes of patients with familial Mediterranean fever. Free Radical Biology and Medicine, 2008, 44, 386-393.	1.3	45
101	Radiation Chemistry of DNA, II. Strand Breaks and Sugar Release by Î ³ -Irradiation of DNA in Aqueous Solution. The Effect of Oxygen. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1975, 30, 826-828.	0.6	44
102	Isolation of 2-deoxy- <scp>d</scp> - <i>erythro</i> -pentonic Acid from an Alkali-labile Site in γ-irradiated DNA. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 1977, 32, 481-483.	1.0	44
103	Determination of Active Site Residues in Escherichia coli Endonuclease VIII. Journal of Biological Chemistry, 2002, 277, 2938-2944.	1.6	43
104	The oxidative DNA glycosylases of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia coli counterparts. DNA Repair, 2010, 9, 177-190.	1.3	43
105	Radiation-induced DNA Strand Breaks in Deoxygenated Aqueous Solutions. The Formation of Altered Sugars as End Groups. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 1979, 36, 565-576.	1.0	41
106	A novel activity ofE. coliuracil DNAN-glycosylase excision of isodialuric acid (5,6-dihydroxyuracil), a major product of oxidative DNA damage, from DNA. FEBS Letters, 1995, 364, 255-258.	1.3	41
107	Substrate specificity and excision kinetics of natural polymorphic variants and phosphomimetic mutants of human 8â€oxoguanineâ€DNA glycosylase. FEBS Journal, 2009, 276, 5149-5162.	2.2	41
108	Molecular Analysis of Base Damage Clustering Associated with a Site-Specific Radiation-Induced DNA Double-Strand Break. Radiation Research, 2006, 166, 767-781.	0.7	40

#	Article	IF	CITATIONS
109	The mass spectra of TMS-ethers of deuterated polyalcohols. A contribution to the structural investigation of sugars. Organic Mass Spectrometry, 1974, 8, 335-345.	1.3	39
110	[46] Gas chromatography—mass spectrometry of free radical-induced products of pyrimidines and purines in DNA. Methods in Enzymology, 1990, 193, 842-857.	0.4	39
111	Arabidopsis thalianaOgg1 Protein Excises 8-Hydroxyguanine and 2,6-Diamino-4-hydroxy-5-formamidopyrimidine from Oxidatively Damaged DNA Containing Multiple Lesions. Biochemistry, 2003, 42, 3089-3095.	1.2	38
112	Measurement of (5′R)- and (5′S)-8,5′-cyclo-2′-deoxyadenosines in DNA in vivo by liquid chromatography/isotope-dilution tandem mass spectrometry. Biochemical and Biophysical Research Communications, 2009, 386, 656-660.	1.0	38
113	Radiation Chemistry of Carbohydrates, VIII. γ-Radiolysis of Cellobiose in N2O-saturated Aqueous Solution. Part II. Quantitative Measurements. Mechanisms of the Radical-induced Scission of the Glycosidic Linkage. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1976, 31, 857-864.	0.3	37
114	Formation of radiation-induced crosslinks between thymine and tyrosine: possible model for crosslinking of DNA and proteins by ionizing radiation. Biochemistry, 1985, 24, 233-236.	1.2	37
115	Measurement of 8-hydroxy-2′-deoxyadenosine in DNA by liquid chromatography/mass spectrometry. Free Radical Biology and Medicine, 2001, 31, 336-344.	1.3	37
116	DNA Damage Products (5′ <i>R</i>)- and (5′ <i>S</i>)-8,5′-Cyclo-2′-deoxyadenosines as Potential Biom in Human Urine for Atherosclerosis. Biochemistry, 2012, 51, 1822-1824.	narkers 1.2	37
117	Base modifications in plasmid DNA caused by potassium permanganate. Archives of Biochemistry and Biophysics, 1990, 282, 202-205.	1.4	36
118	A novel DNA N-glycosylase activity of E. coli T4 endonuclease V that excises 4,6-diamino-5-formamidopyrimidine from DNA, a UV-radiation- and hydroxyl radical-induced product of adenine. Mutation Research DNA Repair, 1996, 362, 1-8.	3.8	36
119	The reactions of OH radicals with D-ribose in deoxygenated and oxygenated aqueous solution. Carbohydrate Research, 1977, 58, 21-30.	1.1	35
120	Separation of small DNA and RNA oligonucleotides by high-performance anion-exchange liquid chromatography. Journal of Chromatography A, 1979, 171, 321-330.	1.8	35
121	Intramolecular H Atom Abstraction from the Sugar Moiety by Thymine Radicals in Oligo- and Polydeoxynucleotides. Radiation Research, 1988, 116, 210.	0.7	35
122	Inhibition of DNA Glycosylases via Small Molecule Purine Analogs. PLoS ONE, 2013, 8, e81667.	1.1	35
123	Radiation Chemistry of DNA Model Compounds, IX. Carbohydrate Products in the Î ³ -Radiolysis of Thymidine in Aqueous Solution. The Radical-Induced Scission of the N-Glycosidic Bond. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1976, 31, 227-233.	0.3	34
124	Radiation-Induced Crosslinking of Cytosine. Radiation Research, 1984, 100, 41.	0.7	34
125	Plant and fungal Fpg homologs are formamidopyrimidine DNA glycosylases but not 8-oxoguanine DNA glycosylases. DNA Repair, 2009, 8, 643-653.	1.3	33
126	Elevated urinary levels of 8-oxo-2′-deoxyguanosine, (5′R)- and (5′S)-8,5′-cyclo-2′-deoxyadenosines, 8-iso-prostaglandin F2α as potential biomarkers of oxidative stress in patients with prediabetes. DNA Repair, 2016, 48, 1-7.	and 1.3	33

MIRAL DIZDAROGLU

#	Article	IF	CITATIONS
127	Mutation of potassium permanganate- and hydrogen peroxide-treated plasmid pZ189 replicating in CV-1 monkey kidney cells. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1991, 261, 123-130.	1.2	32
128	Oxidative Changes in the DNA of Stroma and Epithelium from the Female Breast: Potential Implications for Breast Cancer. Cell Cycle, 2006, 5, 1629-1632.	1.3	32
129	Biomarkers Signal Contaminant Effects on the Organs of English Sole (Parophrys vetulus) from Puget Sound. Environmental Health Perspectives, 2006, 114, 823-829.	2.8	32
130	Protective Roles of Singleâ€Wall Carbon Nanotubes in Ultrasonicationâ€Induced DNA Base Damage. Small, 2013, 9, 205-208.	5.2	32
131	Strahlenchemie von Kohlenhydraten, IV. γ-Radiolyse von Cellobiose in N2O-gesätigter wä̈́Yriger Lösung / γ-Radiolysis of Cellobiose in N2O Saturated Aqueous Solution. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1973, 28, 635-646.	0.3	31
132	Radiolytic Studies of the Cumyloxyl Radical in Aqueous Solutions. Israel Journal of Chemistry, 1984, 24, 25-28.	1.0	31
133	DNA base damage in lymphocytes of cancer patients undergoing radiation therapy. Cancer Letters, 1996, 106, 207-215.	3.2	31
134	Weak anion-exchange high-performance liquid chromatography of peptides. Journal of Chromatography A, 1985, 334, 49-69.	1.8	30
135	Aflatoxin-Guanine DNA Adducts and Oxidatively Induced DNA Damage in Aflatoxin-Treated Mice <i>in Vivo</i> as Measured by Liquid Chromatography-Tandem Mass Spectrometry with Isotope Dilution. Chemical Research in Toxicology, 2019, 32, 80-89.	1.7	30
136	Structural Alterations in Breast Stromal and Epithelial DNA: The Influence of 8,5-cyclo-2-Deoxyadenosine. Cell Cycle, 2006, 5, 1240-1244.	1.3	29
137	Addiction to MTH1 protein results in intense expression in human breast cancer tissue as measured by liquid chromatography-isotope-dilution tandem mass spectrometry. DNA Repair, 2015, 33, 101-110.	1.3	29
138	Separation of underivatized dipeptides by high-performance liquid chromatography on a weak anion-exchange bonded phase. Journal of Chromatography A, 1980, 195, 119-126.	1.8	28
139	Substrate Specificity ofDeinococcus radioduransFpg Proteinâ€. Biochemistry, 1999, 38, 9435-9439.	1.2	28
140	Reduced repair of 8-hydroxyguanine in the human breast cancer cell line, HCC1937. BMC Cancer, 2006, 6, 297.	1.1	28
141	Identification and quantification of (5′R)- and (5′S)-8,5′-cyclo-2′-deoxyadenosines in human urine as putative biomarkers of oxidatively induced damage to DNA. Biochemical and Biophysical Research Communications, 2010, 397, 48-52.	1.0	28
142	Extreme Expression of DNA Repair Protein Apurinic/Apyrimidinic Endonuclease 1 (APE1) in Human Breast Cancer As Measured by Liquid Chromatography and Isotope Dilution Tandem Mass Spectrometry. Biochemistry, 2015, 54, 5787-5790.	1.2	27
143	Copper ion-mediated modification of bases in DNA in vitro by benzoyl peroxide. Carcinogenesis, 1993, 14, 1971-1974.	1.3	26
144	The oxidatively induced DNA lesions 8,5′-cyclo-2′-deoxyadenosine and 8-hydroxy-2′-deoxyadenosine are strongly resistant to acid-induced hydrolysis of the glycosidic bond. Mechanisms of Ageing and Development, 2007, 128, 494-502.	2.2	26

#	Article	IF	CITATIONS
145	Conversion of d-fructose into 6-deoxy-d-threo-2,5-hexudiulose by $\hat{1}^3$ -irridation: a chain reaction in the crytalline state. Carbohydrate Research, 1976, 47, 15-23.	1.1	25
146	Separation of peptides by high-performance liquid chromatography on a weak anion-exchange bonded phase. Journal of Chromatography A, 1982, 237, 417-428.	1.8	25
147	Glutathione Depletion by Buthionine Sulfoximine Induces Oxidative Damage to DNA in Organs of Rabbits in Vivo. Biochemistry, 2009, 48, 4980-4987.	1.2	25
148	Oxidatively-induced DNA damage and base excision repair in euthymic patients with bipolar disorder. DNA Repair, 2018, 65, 64-72.	1.3	24
149	Implications of DNA damage and DNA repair on human diseases. Mutagenesis, 2020, 35, 1-3.	1.0	24
150	Evidence for upregulated repair of oxidatively induced DNA damage in human colorectal cancer. DNA Repair, 2011, 10, 1114-1120.	1.3	23
151	Accumulation of oxidatively induced DNA damage in human breast cancer cell lines following treatment with hydrogen peroxide. Cell Cycle, 2007, 6, 1472-8.	1.3	23
152	Separation of the sequence isomers of pyrimidine deoxytetranucleoside triphosphates by high-performance ion-exchange liquid chromatography. Journal of Chromatography A, 1979, 169, 429-435.	1.8	22
153	Separation and sequencing of the sequence isomers of pyrimidine deoxypentanucleoside tetraphosphates by high-performance liquid chromatography. Journal of Chromatography A, 1980, 188, 273-279.	1.8	22
154	Identification and Quantification of Human DNA Repair Protein NEIL1 by Liquid Chromatography/Isotope-Dilution Tandem Mass Spectrometry. Journal of Proteome Research, 2013, 12, 1049-1061.	1.8	22
155	Identification and Quantification of DNA Repair Protein Apurinic/Apyrimidinic Endonuclease 1 (APE1) in Human Cells by Liquid Chromatography/Isotope-Dilution Tandem Mass Spectrometry. PLoS ONE, 2013, 8, e69894.	1.1	22
156	Biomarkers of oxidatively induced DNA damage in dreissenid mussels: A genotoxicity assessment tool for the Laurentian Great Lakes. Environmental Toxicology, 2017, 32, 2144-2153.	2.1	22
157	Chlorella Virus Pyrimidine Dimer Glycosylase Excises Ultraviolet Radiation– and Hydroxyl Radical–induced Products 4,6-Diamino-5-formamidopyrimidine and 2,6-Diamino-4-hydroxy-5-formamidopyrimidine from DNA¶. Photochemistry and Photobiology, 2002, 75, 85.	1.3	22
158	Overexpression and rapid purification of Escherichia coli formamidopyrimidine–DNA glycosylase. Protein Expression and Purification, 2004, 34, 126-133.	0.6	21
159	Combined Effects of High-Dose Bisphenol A and Oxidizing Agent (KBrO ₃) on Cellular Microenvironment, Gene Expression, and Chromatin Structure of Ku70-deficient Mouse Embryonic Fibroblasts. Environmental Health Perspectives, 2016, 124, 1241-1252.	2.8	20
160	Recognition of DNA adducts by edited and unedited forms of DNA glycosylase NEIL1. DNA Repair, 2020, 85, 102741.	1.3	20
161	Î ³ -Irradiation-induced ring-opening of polycrystalline cycloamylose hydrates. Carbohydrate Research, 1976, 49, 315-323.	1.1	19
162	Identification and Quantification of DNA Repair Proteins by Liquid Chromatography/Isotope-Dilution Tandem Mass Spectrometry Using Their Fully ¹⁵ N-Labeled Analogues as Internal Standards. Journal of Proteome Research, 2011, 10, 3802-3813.	1.8	19

MIRAL DIZDAROGLU

#	Article	IF	CITATIONS
163	Stable isotope-labeling of DNA repair proteins, and their purification and characterization. Protein Expression and Purification, 2011, 78, 94-101.	0.6	19
164	RNA oxidation catalyzed by cytochrome c leads to its depurination and cross-linking, which may facilitate cytochrome c release from mitochondria. Free Radical Biology and Medicine, 2012, 53, 854-862.	1.3	18
165	Mass spectra of trimethylsilyl Di-O-methyloximes of aldosuloses and dialdoses. Organic Mass Spectrometry, 1977, 12, 772-776.	1.3	17
166	Kováts' indices of trimethylsilylated amino acids on fused-silica capillary columns. Journal of Chromatography A, 1982, 249, 41-55.	1.8	16
167	INDUCTION OF OXIDATIVE DNA DAMAGE IN U937 CELLS BY TNF OR ANTI-FAS STIMULATION. Cytokine, 2000, 12, 881-887.	1.4	16
168	Assignment of enzyme substrate specificity by principal component analysis of aligned protein sequences: An experimental test using DNA glycosylase homologs. , 2000, 40, 98-105.		15
169	Heavy ion space radiation triggers ongoing DNA base damage by downregulating DNA repair pathways. Life Sciences in Space Research, 2020, 27, 27-32.	1.2	13
170	Separation of diastereomers and analogues of neurotensinby anion-exchange high-performance liquid chromatography. Journal of Chromatography A, 1982, 245, 158-162.	1.8	11
171	Effect of single mutations on the specificity of Escherichia coli FPG protein for excision of purine lesions from DNA damaged by free radicals. Free Radical Biology and Medicine, 2001, 31, 816-823.	1.3	11
172	Introduction to serial reviews on oxidative DNA damage and repair1 1This article is part of a series of reviews on "Oxidative DNA Damage and Repair.―The full list of papers may be found on the homepage of the journal Free Radical Biology and Medicine, 2002, 32, 677.	1.3	11
173	Stoichiometric preference in copper-promoted oxidative DNA damage by ochratoxin A. Journal of Inorganic Biochemistry, 2003, 95, 87-96.	1.5	11
174	Enhanced sensitivity of Neil1â^'/â^' mice to chronic UVB exposure. DNA Repair, 2016, 48, 43-50.	1.3	11
175	Separation of dipeptides by high-resolution gas chromatography on a fused silica capillary column after trimethylsilylation. Analytical Biochemistry, 1980, 108, 269-273.	1.1	10
176	Comparison of reversed-phase and weak anion-exchange high-performance liquid chromatographic methods for peptide separations. Journal of Chromatography A, 1983, 264, 223-229.	1.8	10
177	Significant disparity in base and sugar damage in DNA resulting from neutron and electron irradiation. Journal of Radiation Research, 2014, 55, 1081-1088.	0.8	10
178	Separation of angiotensins by high-performance liquid chromatography on a weak anion-exchange bonded phase. Analytical Biochemistry, 1982, 123, 190-193.	1.1	9
179	Separation of dipeptide diastereomers by high-resolution gas chromatography. Journal of Chromatography A, 1982, 244, 293-298.	1.8	9
180	Characterization of rare NEIL1 variants found in East Asian populations. DNA Repair, 2019, 79, 32-39.	1.3	9

#	Article	IF	CITATIONS
181	Measurement of DNA Biomarkers for the Safety of Tissue-Engineered Medical Products, Using Artificial Skin as a Model. Tissue Engineering, 2004, 10, 1332-1345.	4.9	8
182	Clemens von Sonntag and the early history of radiation-induced sugar damage in DNA. International Journal of Radiation Biology, 2014, 90, 446-458.	1.0	8
183	Production, Purification, and Characterization of 15N-Labeled DNA Repair Proteins as Internal Standards for Mass Spectrometric Measurements. Methods in Enzymology, 2016, 566, 305-332.	0.4	8
184	Expression of a germline variant in the N-terminal domain of the human DNA glycosylase NTHL1 induces cellular transformation without impairing enzymatic function or substrate specificity. Oncotarget, 2020, 11, 2262-2272.	0.8	6
185	Measurement of Oxidatively Induced DNA Damage in <i>Caenorhabditis elegans</i> with High-Salt DNA Extraction and Isotope-Dilution Mass Spectrometry. Analytical Chemistry, 2019, 91, 12149-12155.	3.2	5
186	Ne-22 Ion-Beam Radiation Damage to DNA: From Initial Free Radical Formation to Resulting DNA-Base Damage. ACS Omega, 2021, 6, 16600-16611.	1.6	5
187	Separation and purification of diastereomers of angiotensin I by weak anion-exchange high-performance liquid chromatography. Journal of Chromatography A, 1985, 322, 117-128.	1.8	4
188	Identification and quantification of DNA repair protein poly(ADP ribose) polymerase 1 (PARP1) in human tissues and cultured cells by liquid chromatography/isotope-dilution tandem mass spectrometry. DNA Repair, 2019, 75, 48-59.	1.3	4
189	Excision release of 5?hydroxycytosine oxidatively induced DNA base lesions from the lung genome by cat dander extract challenge stimulates allergic airway inflammation. Clinical and Experimental Allergy, 2018, 48, 1676-1687.	1.4	3
190	Inhibition by Tetrahydroquinoline Sulfonamide Derivatives of the Activity of Human 8-Oxoguanine DNA Glycosylase (OGG1) for Several Products of Oxidatively induced DNA Base Lesions. ACS Chemical Biology, 2021, 16, 45-51.	1.6	3
191	DNA glycosylase deficiency leads to decreased severity of lupus in the Polb-Y265C mouse model. DNA Repair, 2021, 105, 103152.	1.3	3
192	Polymorphic variant Asp239Tyr of human DNA glycosylase NTHL1 is inactive for removal of a variety of oxidatively-induced DNA base lesions from genomic DNA. DNA Repair, 2022, 117, 103372.	1.3	3
193	Separation of sequence isomeric dipeptides by high-resolution gas chromatography. Journal of Chromatography A, 1985, 318, 384-386.	1.8	1
194	Measurement of Oxidative DNA Damage by Gas Chromatography–Mass Spectrometry and Liquid Chromatography–Mass Spectrometry. , 0, , 39-51.		0
195	Chlorella Virus Pyrimidine Dimer Glycosylase Excises Ultraviolet Radiation- and Hydroxyl Radical-induced Products 4,6-Diamino-5-formamidopyrimidine and 2,6-Diamino-4-hydroxy-5-formamidopyrimidine from DNA¶. Photochemistry and Photobiology, 2002, 75, 85-91.	1.3	0
196	Measurement of DNA Biomarkers for the Safety of Tissue-Engineered Medical Products, Using Artificial Skin as a Model. Tissue Engineering, 2004, 10, 1332-1345.	4.9	0