
Ricard Albalat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7315949/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modularity in Protein Evolution: Modular Organization and De Novo Domain Evolution in Mollusk Metallothioneins. Molecular Biology and Evolution, 2021, 38, 424-436.	3.5	12
2	Massive Gene Loss and Function Shuffling in Appendicularians Stretch the Boundaries of Chordate Wnt Family Evolution. Frontiers in Cell and Developmental Biology, 2021, 9, 700827.	1.8	12
3	Tunicates Illuminate the Enigmatic Evolution of Chordate Metallothioneins by Gene Gains and Losses, Independent Modular Expansions, and Functional Convergences. Molecular Biology and Evolution, 2021, 38, 4435-4448.	3.5	6
4	Modular Evolution and Population Variability of Oikopleura dioica Metallothioneins. Frontiers in Cell and Developmental Biology, 2021, 9, 702688.	1.8	5
5	Two Unconventional Metallothioneins in the Apple Snail Pomacea bridgesii Have Lost Their Metal Specificity during Adaptation to Freshwater Habitats. International Journal of Molecular Sciences, 2021, 22, 95.	1.8	7
6	Cardiopharyngeal deconstruction and ancestral tunicate sessility. Nature, 2021, 599, 431-435.	13.7	13
7	Metal-Specificity Divergence between Metallothioneins of Nerita peloronta (Neritimorpha,) Tj ETQq1 1 0.784314 Journal of Molecular Sciences, 2021, 22, 13114.	rgBT /Ov 1.8	erlock 10 Tf 5 6
8	Metallomics reveals a persisting impact of cadmium on the evolution of metal-selective snail metallothioneins. Metallomics, 2020, 12, 702-720.	1.0	15
9	The evolutionary landscape of the Rab family in chordates. Cellular and Molecular Life Sciences, 2019, 76, 4117-4130.	2.4	25
10	Developmental atlas of appendicularian Oikopleura dioica actins provides new insights into the evolution of the notochord and the cardio-paraxial muscle in chordates. Developmental Biology, 2019, 448, 260-270.	0.9	6
11	Oikopleura dioica: An Emergent Chordate Model to Study the Impact of Gene Loss on the Evolution of the Mechanisms of Development. Results and Problems in Cell Differentiation, 2019, 68, 63-105.	0.2	10
12	The ancestral retinoic acid receptor was a low-affinity sensor triggering neuronal differentiation. Science Advances, 2018, 4, eaao1261.	4.7	37
13	Metallothioneins of the urochordate <i>Oikopleura dioica</i> have Cys-rich tandem repeats, large size and cadmium-binding preference. Metallomics, 2018, 10, 1585-1594.	1.0	14
14	Metal binding functions of metallothioneins in the slug <i>Arion vulgaris</i> differ from metal-specific isoforms of terrestrial snails. Metallomics, 2018, 10, 1638-1654.	1.0	19
15	Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature, 2018, 564, 64-70.	13.7	224
16	Wnt evolution and function shuffling in liberal and conservative chordate genomes. Genome Biology, 2018, 19, 98.	3.8	34
17	Diatom bloom-derived biotoxins cause aberrant development and gene expression in the appendicularian chordate Oikopleura dioica. Communications Biology, 2018, 1, 121.	2.0	12
18	Biomphalaria glabrata Metallothionein: Lacking Metal Specificity of the Protein and Missing Gene Upregulation Suggest Metal Sequestration by Exchange Instead of through Selective Binding. International Journal of Molecular Sciences, 2017, 18, 1457.	1.8	14

#	Article	IF	CITATIONS
19	Evolution by gene loss. Nature Reviews Genetics, 2016, 17, 379-391.	7.7	597
20	Coelimination and Survival in Gene Network Evolution: Dismantling the RA-Signaling in a Chordate. Molecular Biology and Evolution, 2016, 33, 2401-2416.	3.5	39
21	<i>Oikopleura dioica</i> culturing made easy: A Low ost facility for an emerging animal model in <scp>E</scp> vo <scp>D</scp> evo. Genesis, 2015, 53, 183-193.	0.8	31
22	The Xenopus alcohol dehydrogenase gene family: characterization and comparative analysis incorporating amphibian and reptilian genomes. BMC Genomics, 2014, 15, 216.	1.2	5
23	Impact of gene gains, losses and duplication modes on the origin and diversification of vertebrates. Seminars in Cell and Developmental Biology, 2013, 24, 83-94.	2.3	87
24	Evolution of the Genetic Machinery of the Visual Cycle: A Novelty of the Vertebrate Eye?. Molecular Biology and Evolution, 2012, 29, 1461-1469.	3.5	38
25	Transposon diversity is higher in amphioxus than in vertebrates: functional and evolutionary inferences. Briefings in Functional Genomics, 2012, 11, 131-141.	1.3	16
26	DNA methylation in amphioxus: from ancestral functions to new roles in vertebrates. Briefings in Functional Genomics, 2012, 11, 142-155.	1.3	43
27	Evolution of Retinoid and Steroid Signaling: Vertebrate Diversification from an Amphioxus Perspective. Genome Biology and Evolution, 2011, 3, 985-1005.	1.1	42
28	Evolution of the Nitric Oxide Synthase Family in Metazoans. Molecular Biology and Evolution, 2011, 28, 163-179.	3.5	123
29	Identification and characterisation of the developmental expression pattern of tbx5b, a novel tbx5 gene in zebrafish. Gene Expression Patterns, 2010, 10, 24-30.	0.3	26
30	Oikopleura dioica Alcohol Dehydrogenase Class 3 Provides New Insights into the Evolution of Retinoic Acid Synthesis in Chordates. Zoological Science, 2010, 27, 128.	0.3	10
31	Identification of Aldh1a, Cyp26 and RAR orthologs in protostomes pushes back the retinoic acid genetic machinery in evolutionary time to the bilaterian ancestor. Chemico-Biological Interactions, 2009, 178, 188-196.	1.7	60
32	The retinoic acid machinery in invertebrates: Ancestral elements and vertebrate innovations. Molecular and Cellular Endocrinology, 2009, 313, 23-35.	1.6	63
33	15-P010 Evolutionary shifts in ALDH structure suggest transitions between pleiotropic and patterning functions. Mechanisms of Development, 2009, 126, S250.	1.7	0
34	Evolution of DNA-methylation machinery: DNA methyltransferases and methyl-DNA binding proteins in the amphioxus Branchiostoma floridae. Development Genes and Evolution, 2008, 218, 691-701.	0.4	34
35	The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Research, 2008, 18, 1100-1111.	2.4	456
36	Analysis of planarian Adh3 supports an intron-rich architecture and tissue-specific expression for the urbilaterian ancestral form. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2007, 146, 489-495.	0.7	6

#	Article	IF	CITATIONS
37	Insights into spawning behavior and development of the european amphioxus (Branchiostoma) Tj ETQq1 1	0.784314 rgBT 0.6	/Overlock 10
07	308B, 484-493.	0.0	103
38	Analysis of the NADHâ€dependent retinaldehyde reductase activity of amphioxus retinol dehydrogenase enzymes enhances our understanding of the evolution of the retinol dehydrogenase family. FEBS Journal, 2007, 274, 3739-3752.	2.2	14
39	Is retinoic acid genetic machinery a chordate innovation?. Evolution & Development, 2006, 8, 394-406.	1.1	75
40	S-nitrosogluthathione reductase activity of amphioxus ADH3: insights into the nitric oxide metabolism. International Journal of Biological Sciences, 2006, 2, 117-124.	2.6	24
41	Getting closer to a pre-vertebrate genome: the non-LTR retrotransposons of Branchiostoma floridae. International Journal of Biological Sciences, 2006, 2, 48-53.	2.6	7
42	Merging protein, gene and genomic data: the evolution of the MDR-ADH family. Heredity, 2005, 95, 184-197.	1.2	38
43	Preliminary observations on the spawning conditions of the European amphioxus (Branchiostoma) Tj ETQq1	1 0.784314 rg 1.4	BT/Overloci
44	The first non-LTR retrotransposon characterised in the cephalochordate amphioxus, BfCR1, shows similarities to CR1-like elements. Cellular and Molecular Life Sciences, 2003, 60, 803-809.	2.4	16
45	Comparative expression analysis of Adh3 during arthropod, urochordate, cephalochordate, and vertebrate development challenges its predicted housekeeping role. Evolution & Development, 2003, 5, 157-162.	1.1	35
46	The non-LTR retrotransposons in Ciona intestinalis: new insights into the evolution of chordate genomes. Genome Biology, 2003, 4, R73.	13.9	16
47	Isolation and characterization of the first non-autonomous transposable element in amphioxus, ATE-1. Gene, 2003, 318, 69-73.	1.0	5
48	Minisatellite instability at the Adh locus reveals somatic polymorphism in amphioxus. Nucleic Acids Research, 2002, 30, 2871-2876.	6.5	8
49	Ascidian and Amphioxus Adh Genes Correlate Functional and Molecular Features of the ADH Family Expansion During Vertebrate Evolution. Journal of Molecular Evolution, 2002, 54, 81-89.	0.8	49
50	Retinoic acid synthesis in the prevertebrate amphioxus involves retinol oxidation. Development Genes and Evolution, 2002, 212, 388-393.	0.4	21
51	Characterization of the amphioxus presenilin gene in a high gene-density genomic region illustrates duplication during the vertebrate lineage. Gene, 2001, 279, 157-164.	1.0	11
52	A statistical analysis of nucleotide substitutions in the Drosophila Adh region reflects irregularities in molecular clocks Genes and Genetic Systems, 2001, 76, 209-212.	0.2	0
53	Endogenous β-galactosidase activity in amphioxus: a useful histochemical marker for the digestive system. Development Genes and Evolution, 2001, 211, 154-156.	0.4	6
54	Characterization of a microsomal retinol dehydrogenase gene from amphioxus: retinoid metabolism before vertebrates. Chemico-Biological Interactions, 2001, 130-132, 359-370.	1.7	19

#	Article	IF	CITATIONS
55	Amphioxus alcohol dehydrogenase is a class 3 form of single type and of structural conservation but with unique developmental expression. FEBS Journal, 2000, 267, 6511-6518.	0.2	36
56	Localization and Characterization of the RNA Binding Protein TLS in Skin and Stratified Mucosa. Journal of Investigative Dermatology, 1998, 110, 277-281.	0.3	4
57	Involvement of the C-terminal Tail in the Activity of Drosophila Alcohol Dehydrogenase. Evaluation of Truncated Proteins Constructed by Site-Directed Mutagenesis. FEBS Journal, 1995, 233, 498-505.	0.2	17
58	A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP Genes and Development, 1994, 8, 2513-2526.	2.7	246
59	Drosophila lebanonensisADH: analysis of recombinant wild-type enzyme and site-directed mutants. FEBS Letters, 1994, 341, 171-176.	1.3	12
60	Adh and Adh-dup sequences of Drosophila lebanonensis and D. immigrans: interspecies comparisons. Gene, 1993, 126, 171-178.	1.0	19
61	Protein engineering ofDrosophilaalcohol dehydrogenase The hydroxyl group of Tyr152is involved in the active site of the enzyme. FEBS Letters, 1992, 308, 235-239.	1.3	49
62	Nucleotide sequence of theAdhgene ofDrosophila lebanonensis. Nucleic Acids Research, 1991, 19, 424-424.	6.5	0
63	Nucleotide sequence of theAdhgene ofDrosophila lebanonensis. Nucleic Acids Research, 1990, 18, 6706-6706.	6.5	6