Nur Farhana Jaafar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/731577/publications.pdf Version: 2024-02-01

ΝΠΟ ΕΛΟΗΛΝΑ ΙΛΛΕΛΟ

#	Article	IF	CITATIONS
1	Utilization of bivalve shell-treated Zea mays L. (maize) husk leaf as a low-cost biosorbent for enhanced adsorption of malachite green. Bioresource Technology, 2012, 120, 218-224.	4.8	112
2	Photodecolorization of methyl orange over α-Fe2O3-supported HY catalysts: The effects of catalyst preparation and dealumination. Chemical Engineering Journal, 2012, 191, 112-122.	6.6	93
3	Direct in situ activation of Ag0 nanoparticles in synthesis of Ag/TiO2 and its photoactivity. Applied Surface Science, 2015, 338, 75-84.	3.1	85
4	Isomorphous substitution of Zr in the framework of aluminosilicate HY by an electrochemical method: Evaluation by methylene blue decolorization. Applied Catalysis B: Environmental, 2012, 125, 311-323.	10.8	81
5	Sequential desilication–isomorphous substitution route to prepare mesostructured silica nanoparticles loaded with ZnO and their photocatalytic activity. Applied Catalysis A: General, 2013, 468, 276-287.	2.2	69
6	Strategies for introducing titania onto mesostructured silica nanoparticles targeting enhanced photocatalytic activity of visible-light-responsive Ti-MSN catalysts. Journal of Cleaner Production, 2017, 143, 948-959.	4.6	66
7	Variation of the crystal growth of mesoporous silica nanoparticles and the evaluation to ibuprofen loading and release. Journal of Colloid and Interface Science, 2014, 421, 6-13.	5.0	56
8	Synergistic interactions of Cu and N on surface altered amorphous TiO ₂ nanoparticles for enhanced photocatalytic oxidative desulfurization of dibenzothiophene. RSC Advances, 2016, 6, 76259-76268.	1.7	54
9	Tailoring the current density to enhance photocatalytic activity of CuO/HY for decolorization of malachite green. Journal of Electroanalytical Chemistry, 2013, 701, 50-58.	1.9	52
10	Visible-light photoactivity of plasmonic silver supported on mesoporous TiO2 nanoparticles (Ag-MTN) for enhanced degradation of 2-chlorophenol: Limitation of Ag-Ti interaction. Applied Surface Science, 2017, 392, 1068-1077.	3.1	51
11	Synthesis of reverse micelle α-FeOOH nanoparticles in ionic liquid as an only electrolyte: Inhibition of electron–hole pair recombination for efficient photoactivity. Applied Catalysis A: General, 2014, 469, 33-44.	2.2	47
12	New insights into self-modification of mesoporous titania nanoparticles for enhanced photoactivity: effect of microwave power density on formation of oxygen vacancies and Ti ³⁺ defects. RSC Advances, 2015, 5, 90991-91000.	1.7	45
13	Strategies for the formation of oxygen vacancies in zinc oxide nanoparticles used for photocatalytic degradation of phenol under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 388, 112202.	2.0	44
14	Structural rearrangement of mesostructured silica nanoparticles incorporated with ZnO catalyst and its photoactivity: Effect of alkaline aqueous electrolyte concentration. Applied Surface Science, 2015, 330, 10-19.	3.1	42
15	Potential of deep eutectic solvent in photocatalyst fabrication methods for water pollutant degradation: A review. Journal of Environmental Chemical Engineering, 2022, 10, 107422.	3.3	15
16	New direct consecutive formation of spinel phase in (Fe,Co,Ni)Al2O4 composites for enhanced Pd(II) ions removal. Journal of Alloys and Compounds, 2017, 727, 744-756.	2.8	12
17	ZnO Surface Doping to Enhance the Photocatalytic Activity of Lithium Titanate/TiO2 for Methylene Blue Photodegradation under Visible Light Irradiation. Surfaces, 2020, 3, 301-318.	1.0	12
18	Adsorption and Release of 5-Fluorouracil (5FU) from Mesoporous Silica Nanoparticles. Materials Today: Proceedings, 2019, 19, 1722-1729.	0.9	9

Nur Farhana Jaafar

#	Article	IF	CITATIONS
19	Electrogenerated iron supported on mesoporous titania nanoparticles for the photocatalytic degradation of 2-chlorophenol. Comptes Rendus Chimie, 2019, 22, 813-821.	0.2	7
20	Methylene Blue Adsorption onto Cockle Shells-Treated Banana Pith: Optimization, Isotherm, Kinetic, and Thermodynamic Studies. Indonesian Journal of Chemistry, 2020, 20, 368.	0.3	5
21	SIGNIFICANT EFFECT OF PH ON PHOTOCATALYTIC DEGRADATION OF ORGANIC POLLUTANTS USING SEMICONDUCTOR CATALYSTS. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.3	4
22	X-ray diffraction and spectroscopic studies of microwave synthesized mesoporous titania nanoparticles for photodegradation of 2-chlorophenol under visible light. AIP Conference Proceedings, 2019, , .	0.3	4
23	Effect of microwave power intensity on synthesis of mesoporous titania nanoparticles for degradation of 2,4-dichlorophenol: Photoactivity performance and kinetic studies. IOP Conference Series: Materials Science and Engineering, 2020, 736, 032016.	0.3	4
24	Insight into the influence of defect sites in mixed phase of mesoporous titania nanoparticles toward photocatalytic degradation of 2â€chlorophenol: Effect of light source. Journal of the Chinese Chemical Society, 2021, 68, 1644.	0.8	2
25	Copper oxide supported on graphene for phodegradation of rhodamine B. Malaysian Journal of Fundamental and Applied Sciences, 2015, 11, .	0.4	1
26	A facile preparation of nanosized ZnO and its use in photocatalytic decolorization of methyl orange. Malaysian Journal of Fundamental and Applied Sciences, 2014, 7, .	0.4	1
27	Electrochemical Degradation of Reactive Blue 21 and Synthetic Textile Effluent by Using Co47.5/C47.5-PVC5 Composite Electrode. Acta Chimica Slovenica, 2019, 66, 284-293.	0.2	Ο
28	Electrogenerated Copper Supported Zinc Oxide for Degradation of 2,4-Dichlorophenol. Key Engineering Materials, 0, 920, 1-6.	0.4	0