Stefan Stender

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7315295/publications.pdf

Version: 2024-02-01

40 papers 4,089 citations

279798 23 h-index 330143 37 g-index

42 all docs 42 docs citations

times ranked

42

6764 citing authors

#	Article	IF	CITATIONS
1	Metabolic and Genetic Risk Factors Are the Strongest Predictors of Severity of Alcohol-Related Liver Fibrosis. Clinical Gastroenterology and Hepatology, 2022, 20, 1784-1794.e9.	4.4	38
2	A rare genetic variant in the manganese transporter SLC30A10 and elevated liver enzymes in the general population. Hepatology International, 2022, 16, 702-711.	4.2	4
3	rs641738C>T near MBOAT7 is associated with liver fat, ALT and fibrosis in NAFLD: A meta-analysis. Journal of Hepatology, 2021, 74, 20-30.	3.7	77
4	High Risk of Fatty Liver Disease Amplifies the Alanine Transaminase–Lowering Effect of a HSD17B13 Variant. Hepatology, 2020, 71, 56-66.	7.3	60
5	The Effect of Overweight and Obesity on Liver Biochemical Markers in Children and Adolescents. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 430-442.	3.6	34
6	Metabolic and genetic risk factors predict advanced alcohol-related liver fibrosis regardless of drinking pattern. Journal of Hepatology, 2020, 73, S186-S187.	3.7	O
7	Prevalence and Risk Factors of Moderate-to-Severe Hepatic Steatosis in Human Immunodeficiency Virus Infection: The Copenhagen Co-morbidity Liver Study. Journal of Infectious Diseases, 2020, 222, 1353-1362.	4.0	17
8	Combined Effect of PNPLA3, TM6SF2, and HSD17B13 Variants on Risk of Cirrhosis and Hepatocellular Carcinoma in the General Population. Hepatology, 2020, 72, 845-856.	7.3	132
9	Assessment of Rapid Hepatic Glycogen Synthesis in Humans Using Dynamic 13C Magnetic Resonance Spectroscopy. Hepatology Communications, 2020, 4, 425-433.	4.3	12
10	PNPLA3 Genotype and Risk of Liver and Allâ€Cause Mortality. Hepatology, 2020, 71, 777-779.	7.3	23
11	HSD17B13 as a promising therapeutic target against chronic liver disease. Liver International, 2020, 40, 756-757.	3.9	9
12	Genetic Variation at <i>PPP1R3B</i> Increases Hepatic CT Attenuation and Interacts With Prandial Status on Plasma Glucose. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1963-1972.	3.6	6
13	Genetic Aspects of Non-alcoholic Fatty Liver Disease (NAFLD). , 2019, , 195-206.		1
14	Identification and Replication of Six Loci Associated With Gallstone Disease. Hepatology, 2019, 70, 597-609.	7.3	18
15	Relationship between genetic variation at PPP1R3B and levels of liver glycogen and triglyceride. Hepatology, 2018, 67, 2182-2195.	7.3	51
16	Causal relationship of hepatic fat with liver damage and insulin resistance in nonalcoholic fatty liver. Journal of Internal Medicine, 2018, 283, 356-370.	6.0	256
17	Liver fat content, non-alcoholic fatty liver disease, and ischaemic heart disease: Mendelian randomization and meta-analysis of 279 013 individuals. European Heart Journal, 2018, 39, 385-393.	2.2	152
18	Response to: liver fat content, non-alcoholic fatty liver disease, and ischaemic heart disease. European Heart Journal, 2018, 39, 3399-3399.	2.2	1

#	Article	IF	CITATIONS
19	A Protein-Truncating <i> HSD17B13 < /i > Variant and Protection from Chronic Liver Disease. New England Journal of Medicine, 2018, 378, 1096-1106.</i>	27.0	556
20	<i>HSD17B13</i> and Chronic Liver Disease in Blacks and Hispanics. New England Journal of Medicine, 2018, 379, 1876-1877.	27.0	39
21	Adiposity amplifies the genetic risk of fatty liver disease conferred by multiple loci. Nature Genetics, 2017, 49, 842-847.	21.4	288
22	Using genetics to explore whether the cholesterol-lowering drug ezetimibe may cause an increased risk of cancer. International Journal of Epidemiology, 2017, 46, 1777-1785.	1.9	10
23	Using human genetics to predict the effects and side-effects of drugs. Current Opinion in Lipidology, 2016, 27, 105-111.	2.7	10
24	Four Susceptibility Loci for Gallstone Disease Identified in a Meta-analysis of Genome-Wide Association Studies. Gastroenterology, 2016, 151, 351-363.e28.	1.3	74
25	Adult-onset liver disease and hepatocellular carcinoma in S-adenosylhomocysteine hydrolase deficiency. Molecular Genetics and Metabolism, 2015, 116, 269-274.	1.1	37
26	Genetic variation in the cholesterol transporter NPC1L1, ischaemic vascular disease, and gallstone disease. European Heart Journal, 2015, 36, 1601-1608.	2.2	59
27	Genetic Variation in NPC1L1 and Risk of Gallstone Disease. Journal of the American College of Cardiology, 2015, 66, 1086.	2.8	2
28	HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet, The, 2015, 385, 351-361.	13.7	562
29	Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nature Genetics, 2014, 46, 352-356.	21.4	938
30	APOC3, Coronary Disease, and Complexities of Mendelian Randomization. Cell Metabolism, 2014, 20, 387-389.	16.2	34
31	The ABCG5/8 Cholesterol Transporter and Myocardial Infarction Versus Gallstone Disease. Journal of the American College of Cardiology, 2014, 63, 2121-2128.	2.8	45
32	Genetically elevated bilirubin and risk of ischaemic heart disease: three <scp>M</scp> endelian randomization studies and a metaâ€analysis. Journal of Internal Medicine, 2013, 273, 59-68.	6.0	84
33	Low-density lipoprotein cholesterol and risk of gallstone disease: A Mendelian randomization study and meta-analyses. Journal of Hepatology, 2013, 58, 126-133.	3.7	22
34	Elevated body mass index as a causal risk factor for symptomatic gallstone disease: A Mendelian randomization study. Hepatology, 2013, 58, 2133-2141.	7.3	101
35	Extreme Bilirubin Levels as a Causal Risk Factor for Symptomatic Gallstone Disease. JAMA Internal Medicine, 2013, 173, 1222.	5.1	42
36	Use of Allele-Specific FAIRE to Determine Functional Regulatory Polymorphism Using Large-Scale Genotyping Arrays. PLoS Genetics, 2012, 8, e1002908.	3.5	21

STEFAN STENDER

#	Article	IF	CITATION
37	Sterol transporter adenosine triphosphate-binding cassette transporter G8, gallstones, and biliary cancer in 62,000 individuals from the general population. Hepatology, 2011, 53, 640-648.	7.3	48
38	Low-Density Lipoprotein Cholesterol and the Risk of Cancer: A Mendelian Randomization Study. Journal of the National Cancer Institute, 2011, 103, 508-519.	6.3	134
39	Genetic Variation in Liver X Receptor Alpha and Risk of Ischemic Vascular Disease in the General Population. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2990-2996.	2.4	7
40	Adeno-associated viral vector transduction of human mesenchymal stem cells., 2007, 13, 93-99.		82