
Sandip B. Bankar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7314994/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adsorption of acetic acid on ion exchange resin in aqueous and non-aqueous conditions: batch equilibrium study and thermodynamic analysis. Indian Chemical Engineer, 2022, 64, 348-358.	0.9	1
2	Reducing agents assisted fed-batch fermentation to enhance ABE yields. Energy Conversion and Management, 2021, 227, 113627.	4.4	18
3	Efficient Strategy to Alleviate the Inhibitory Effect of Lignin-Derived Compounds for Enhanced Butanol Production. ACS Sustainable Chemistry and Engineering, 2021, 9, 1172-1179.	3.2	9
4	Enhancing Biobutanol Production from biomass willow by pre-removal of water extracts or bark. Journal of Cleaner Production, 2021, 327, 129432.	4.6	8
5	Adsorptive Removal of Unsaturated Fatty Acids Using Ion Exchange Resins. Journal of Chemical & Engineering Data, 2021, 66, 308-321.	1.0	7
6	Novel multistage solid–liquid circulating fluidized bed: liquid phase mixing characteristics. Particulate Science and Technology, 2020, 38, 144-155.	1.1	1
7	Solvent extraction of butanol from synthetic solution and fermentation broth: Batch and continuous studies. Separation and Purification Technology, 2020, 249, 117058.	3.9	10
8	Inhibition of hyperthermostable xylanases by superbase ionic liquids. Process Biochemistry, 2020, 95, 148-156.	1.8	10
9	Biobutanol production from sugarcane straw: Defining optimal biomass loading for improved ABE fermentation. Industrial Crops and Products, 2020, 148, 112265.	2.5	57
10	An investigation on changes in composition and antioxidant potential of mature and immature summer truffle (Tuber aestivum). European Food Research and Technology, 2020, 246, 723-731.	1.6	17
11	Valorization of sugarcane straw to produce highly conductive bacterial cellulose / graphene nanocomposite films through in situ fermentation: Kinetic analysis and property evaluation. Journal of Cleaner Production, 2019, 238, 117859.	4.6	44
12	Enhanced Biobutanol Production in Folic Acid-Induced Medium by Using Clostridium acetobutylicum NRRL B-527. ACS Omega, 2019, 4, 12978-12982.	1.6	8
13	<i>In Situ</i> Bioprocessing of Bacterial Cellulose with Graphene: Percolation Network Formation, Kinetic Analysis with Physicochemical and Structural Properties Assessment. ACS Applied Bio Materials, 2019, 2, 4052-4066.	2.3	29
14	Strategic intensification in butanol production by exogenous amino acid supplementation: Fermentation kinetics and thermodynamic studies. Bioresource Technology, 2019, 288, 121521.	4.8	13
15	Improvements in the extraction of bioactive compounds by enzymes. Current Opinion in Food Science, 2019, 25, 62-72.	4.1	57
16	Stabilization of cutinase by covalent attachment on magnetic nanoparticles and improvement of its catalytic activity by ultrasonication. Ultrasonics Sonochemistry, 2019, 55, 174-185.	3.8	14
17	Mixing efficiency studies in an airlift bioreactor with helical flow promoters for improved reactor performance. Chemical Engineering and Processing: Process Intensification, 2019, 137, 80-86.	1.8	8
18	Solid-liquid circulating fluidized bed: a way forward. Reviews in Chemical Engineering, 2018, 35, 1-44.	2.3	23

SANDIP B. BANKAR

#	Article	IF	CITATIONS
19	Biobutanol production using pea pod waste as substrate: Impact of drying on saccharification and fermentation. Renewable Energy, 2018, 117, 520-529.	4.3	57
20	Novel multistage solid–liquid circulating fluidized bed: Hydrodynamic characteristics. Particuology, 2018, 38, 134-142.	2.0	7
21	Microbial Polyamino Acids: An Overview for Commercial Attention. , 2018, , 381-412.		4
22	Process intensification strategies for enhanced holocellulose solubilization: Beneficiation of pineapple peel waste for cleaner butanol production. Journal of Cleaner Production, 2018, 199, 937-947.	4.6	21
23	Role of Trace Elements as Cofactor: An Efficient Strategy toward Enhanced Biobutanol Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 9304-9313.	3.2	31
24	Fermentative production of extracellular amylase from novel amylase producer, <i>Tuber maculatum</i> mycelium, and its characterization. Preparative Biochemistry and Biotechnology, 2018, 48, 549-555.	1.0	9
25	Enzyme-Assisted Extraction of Bioactives. , 2017, , 171-201.		21
26	New Insight into Sugarcane Industry Waste Utilization (Press Mud) for Cleaner Biobutanol Production by Using C. acetobutylicum NRRL B-527. Applied Biochemistry and Biotechnology, 2017, 183, 1008-1025.	1.4	18
27	Cauliflower waste utilization for sustainable biobutanol production: revelation of drying kinetics and bioprocess development. Bioprocess and Biosystems Engineering, 2017, 40, 1493-1506.	1.7	54
28	Sustainable biobutanol production from pineapple waste by using Clostridium acetobutylicum B 527: Drying kinetics study. Bioresource Technology, 2017, 225, 359-366.	4.8	76
29	Supercritical carbon dioxide extraction of astaxanthin from Paracoccus NBRC 101723: Mathematical modelling study. Separation Science and Technology, 2016, 51, 2164-2173.	1.3	5
30	Acetone-butanol-ethanol (ABE) fermentation using the root hydrolysate after extraction of forskolin from Coleus forskohlii. Renewable Energy, 2016, 86, 594-601.	4.3	20
31	Interaction of carbohydrates with alcohol dehydrogenase: Effect on enzyme activity. Journal of Bioscience and Bioengineering, 2015, 120, 252-256.	1.1	8
32	Biobutanol from Lignocellulosic Wastes. Biofuel and Biorefinery Technologies, 2015, , 289-324.	0.1	6
33	Xylanase as a processing aid for papads, an Indian traditional food based on black gram. LWT - Food Science and Technology, 2015, 62, 1148-1153.	2.5	11
34	Genetic engineering of Clostridium acetobutylicum to enhance isopropanol-butanol-ethanol production with an integrated DNA-technology approach. Renewable Energy, 2015, 83, 1076-1083.	4.3	28
35	Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms. Current Opinion in Biotechnology, 2015, 33, 228-259.	3.3	160

36 MILK AND MILK PRODUCTS | Microbiology of Cream and Butter., 2014, , 728-737.

6

SANDIP B. BANKAR

#	Article	IF	CITATIONS
37	Continuous lignocellulosic ethanol production using Coleus forskohlii root hydrolysate. Fuel, 2014, 126, 77-84.	3.4	15
38	Enhanced stability of alcohol dehydrogenase by non-covalent interaction with polysaccharides. Applied Microbiology and Biotechnology, 2014, 98, 6307-6316.	1.7	27
39	Empirical predictive modelling of poly-É›-lysine biosynthesis in resting cells of Streptomyces noursei. Food Science and Biotechnology, 2014, 23, 201-207.	1.2	7
40	Enzymatic hydrolysis of hardwood and softwood harvest residue fibers released by sulfur dioxide–ethanol–water fractionation. Bioresource Technology, 2014, 167, 530-538.	4.8	37
41	Enhanced isopropanol–butanol–ethanol (IBE) production in immobilized column reactor using modified Clostridium acetobutylicum DSM792. Fuel, 2014, 136, 226-232.	3.4	38
42	Poly-ε-lysine amylase conjugates to increase the stability of enzyme. Food Bioscience, 2014, 5, 85-90.	2.0	6
43	A green process for the production of butanol from butyraldehyde using alcohol dehydrogenase: process details. RSC Advances, 2014, 4, 14597.	1.7	7
44	Biobutanol: the outlook of an academic and industrialist. RSC Advances, 2013, 3, 24734.	1.7	153
45	Panorama of poly-ε-lysine. RSC Advances, 2013, 3, 8586.	1.7	46
46	Enzyme-assisted extraction for enhanced yields of turmeric oleoresin and its constituents. Food Bioscience, 2013, 3, 36-41.	2.0	40
47	The two stage immobilized column reactor with an integrated solvent recovery module for enhanced ABE production. Bioresource Technology, 2013, 140, 269-276.	4.8	41
48	Continuous two stage acetone–butanol–ethanol fermentation with integrated solvent removal using Clostridium acetobutylicum B 5313. Bioresource Technology, 2012, 106, 110-116.	4.8	113
49	Co-Immobilization of Glucose Oxidase-Catalase: Optimization of Immobilization Parameters to Improve the Immobilization Yield. International Journal of Food Engineering, 2011, 7, .	0.7	8
50	Metabolic precursors enhance the production of polyâ€Îµâ€lysine by <i>Streptomyces noursei</i> NRRL 5126. Engineering in Life Sciences, 2011, 11, 253-258.	2.0	20
51	Enzyme-assisted three phase partitioning: A novel approach for extraction of turmeric oleoresin. Process Biochemistry, 2011, 46, 423-426.	1.8	53
52	Improved Poly- ¥-Lysine Biosynthesis Using Streptomyces noursei NRRL 5126 by Controlling Dissolved Oxygen During Fermentation. Journal of Microbiology and Biotechnology, 2011, 21, 652-658.	0.9	24
53	Improved poly-ε-lysine biosynthesis using Streptomyces noursei NRRL 5126 by controlling dissolved oxygen during fermentation. Journal of Microbiology and Biotechnology, 2011, 21, 652-8.	0.9	9
54	Optimization of poly-ε-lysine production by Streptomyces noursei NRRL 5126. Bioresource Technology, 2010, 101, 8370-8375.	4.8	39

#	Article	IF	CITATIONS
55	Glucose oxidase — An overview. Biotechnology Advances, 2009, 27, 489-501.	6.0	978
56	Optimization of Aspergillus niger Fermentation for the Production of Glucose Oxidase. Food and Bioprocess Technology, 2009, 2, 344-352.	2.6	53
57	Fermentative Production, Purification and Characterization of Nisin. International Journal of Food Engineering, 2008, 4, .	0.7	10
58	Enhanced activity of hyperthermostable Pyrococcus horikoshii endoglucanase in superbase ionic liquids. Biotechnology Letters, 0, , .	1.1	2