Peter E Strizhak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7314934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complex Transient Oscillations in the Belousov-Zhabotinskii Reaction in a Batch Reactor. The Journal of Physical Chemistry, 1995, 99, 10830-10833.	2.9	52
2	Spontaneous Formation of Cellular Chemical System that Sustains Itself far from Thermodynamic Equilibrium. Journal of Physical Chemistry B, 2004, 108, 4937-4939.	1.2	42
3	Potential of chaotic chemical systems in nanotrace analysis based on the Belousov—Zhabotinskii reaction (BrOâ^'3—malonic acid—ferroin). Determination of manganese(II). Talanta, 1993, 40, 1227-1232.	2.9	41
4	Nanosize effects in heterogeneous catalysis. Theoretical and Experimental Chemistry, 2013, 49, 2-21.	0.2	39
5	Copper–cerium oxide catalysts supported on monoclinic zirconia: Structural features and catalytic behavior in preferential oxidation of carbon monoxide in hydrogen excess. Applied Catalysis A: General, 2009, 365, 159-164.	2.2	38
6	Slow manifold structure and the emergence of mixed-mode oscillations. Journal of Chemical Physics, 1997, 107, 2881-2889.	1.2	37
7	Structure and State of Copper Oxide Species Supported on Yttria-Stabilized Zirconia. Journal of Physical Chemistry C, 2009, 113, 21368-21375.	1.5	36
8	Structure of Copper Oxide Species Supported on Monoclinic Zirconia. Journal of Physical Chemistry C, 2015, 119, 28828-28835.	1.5	34
9	Determination of traces of thallium using the transient chaotic regime in the Belousov–Zhabotinskii oscillating chemical reaction. Analytica Chimica Acta, 2001, 428, 15-21.	2.6	32
10	The use of industrial dehydrogenation catalysts for hydrogen production from bioethanol. International Journal of Hydrogen Energy, 2006, 31, 1607-1610.	3.8	32
11	Slow passage through a supercritical Hopf bifurcation: Timeâ€delayed response in the Belousov–Zhabotinsky reaction in a batch reactor. Journal of Chemical Physics, 1996, 105, 10905-10910.	1.2	31
12	Period adding and broken Farey tree sequence of bifurcations for mixed-mode oscillations and chaos in the simplest three-variable nonlinear system. Journal of Chemical Physics, 2000, 112, 6122-6130.	1.2	29
13	Liquid-phase synthesis of ethyl tert-butyl ether over acid cation-exchange inorganic–organic resins. Applied Catalysis A: General, 2009, 362, 82-87.	2.2	28
14	Non-Fickian diffusion of methanol in mesoporous media: Geometrical restrictions or adsorption-induced?. Journal of Chemical Physics, 2017, 146, 124704.	1.2	28
15	Differences in the structure and functionalities of graphene oxide and reduced graphene oxide obtained from graphite with various degrees of graphitization. Journal of Physics and Chemistry of Solids, 2022, 164, 110614.	1.9	27
16	Complex mixed-mode periodic and chaotic oscillations in a simple three-variable model of nonlinear system. Chaos, 2000, 10, 299-310.	1.0	25
17	Yttria-Stabilized Zirconia as a High-Performance Catalyst for Ethanol to <i>n</i> -Butanol Guerbet Coupling. ACS Omega, 2019, 4, 21469-21476.	1.6	25
18	The Effect of Ceria Content on the Acid–Base and Catalytic Characteristics of ZrO2–CeO2 Oxide Compositions in the Process of Ethanol to n-Butanol Condensation. Catalysis Letters, 2020, 150, 234-242.	1.4	25

#	Article	IF	CITATIONS
19	Synthesis, spectroscopic and redox behaviour of some copper(II) and copper(I) biomimetic complexes. Inorganica Chimica Acta, 1988, 151, 133-137.	1.2	24
20	Nonlinear Dynamics of the BZ Reaction: A Simple Experiment that Illustrates Limit Cycles, Chaos, Bifurcations, and Noise. Journal of Chemical Education, 1996, 73, 868.	1.1	24
21	Oxidation of ascorbic acid by air oxygen catalyzed by copper(II) ions in batch and continuous flow stirred tank reactors: bistability, oscillations and stochastic resonance. Physical Chemistry Chemical Physics, 2000, 2, 4721-4727.	1.3	24
22	Structure Characterization of Nanocrystalline Yttria- Stabilized Zirconia Powders Prepared via Microwave-Assisted Synthesis. Journal of Physical Chemistry C, 2012, 116, 9762-9768.	1.5	24
23	Potential of the analyte pulse perturbation technique for the determination of polyphenols based on the Belousov–Zhabotinskii reaction. Analyst, The, 2000, 125, 2118-2124.	1.7	21
24	Low temperature hydrogen purification from CO for fuel cell application over copper–ceria catalysts supported on different oxides. International Journal of Hydrogen Energy, 2011, 36, 1271-1275.	3.8	20
25	Size effect in CO oxidation over magnesia-supported ZnO nanoparticles. Journal of Molecular Catalysis A, 2011, 335, 14-23.	4.8	20
26	An investigation of anomalous time-fractional diffusion of isopropyl alcohol in mesoporous silica. International Journal of Heat and Mass Transfer, 2017, 104, 493-502.	2.5	20
27	Single-step synthesis of metal-coated well-aligned CNx nanotubes using an aerosol-technique. Carbon, 2007, 45, 2889-2896.	5.4	19
28	Relationship between the anomalous diffusion and the fractal dimension of the environment. Chemical Physics, 2018, 503, 71-76.	0.9	18
29	Infinite period and Hopf bifurcations for thepHâ€regulated oscillations in a semibatch reactor (H2O2–Cu2+–S2O2â~'3–NaOH system). Chaos, 1996, 6, 461-465.	1.0	17
30	Catalytic properties of graphene material in the hydrogenation of ethylene. Theoretical and Experimental Chemistry, 2013, 48, 367-370.	0.2	17
31	Catalytic Activity of Multiwalled Carbon Nanotubes in Acetylene Hydrogenation. ChemCatChem, 2017, 9, 4470-4474.	1.8	17
32	Determination of gases (NO, CO, Cl2) using mixed-mode regimes in the Belousov–Zhabotinskii oscillating chemical reaction. Talanta, 2000, 51, 935-947.	2.9	15
33	Chemical catalytic vapor deposition (CCVD) synthesis of carbon nanotubes by decomposition of ethylene on metal (Ni, Co, Fe) nanoparticles. Reaction Kinetics and Catalysis Letters, 2008, 93, 295-303.	0.6	15
34	Effect of Modifying Additives on the Catalytic Properties of Zirconium Dioxide in the Conversion of Ethanol Into 1-Butanol. Theoretical and Experimental Chemistry, 2019, 55, 43-49.	0.2	15
35	Insight into the active site nature of zeolite H-BEA for liquid phase etherification of isobutylene with ethanol. RSC Advances, 2019, 9, 35957-35968.	1.7	15
36	Multifractal Properties of Copper Sulfide Film Formed in Self-Organizing Chemical System. Theoretical and Experimental Chemistry, 2002, 38, 259-262.	0.2	14

#	Article	IF	CITATIONS
37	Geometric and electronic approaches to size effects in heterogeneous catalysis. Kinetics and Catalysis, 2011, 52, 128-138.	0.3	14
38	Production of Hydrogen by Steam Reforming of Ethanol. Theoretical and Experimental Chemistry, 2013, 49, 277-297.	0.2	14
39	Catalytic properties of reduced graphene oxide in acetylene hydrogenation. Carbon, 2020, 157, 277-285.	5.4	14
40	TPR Study of Core-Shell Fe@Fe ₃ O ₄ Nanoparticles Supported on Activated Carbon and Carbon Nanotubes. Advances in Materials Physics and Chemistry, 2012, 02, 17-22.	0.3	14
41	Title is missing!. Kinetics and Catalysis, 2002, 43, 233-244.	0.3	13
42	Methane oxidative carbonylation catalyzed by rhodium chalcogen halides over carbon supports. Journal of Natural Gas Chemistry, 2008, 17, 1-7.	1.8	13
43	Effect of adsorption–desorption of reaction mixture components on ethyl-tert-butyl ether synthesis over commercial sulfonic acid resins. Catalysis Communications, 2011, 12, 1142-1145.	1.6	13
44	New oscillation reactions and pattern formation in dioxygen systems. Chemical Physics Letters, 1991, 186, 15-18.	1.2	12
45	Effect of the nature of the support for copper-cerium oxide catalysts on selective oxidation of CO in hydrogen-rich mixtures. Theoretical and Experimental Chemistry, 2006, 42, 133-138.	0.2	12
46	Fractal dimension of zirconia nanopowders and their activity in the CO oxidation. Catalysis Communications, 2011, 12, 766-771.	1.6	12
47	Deposition of Monodisperse Platinum Nanoparticles of Controlled Size on Different Supports. Advances in Nanoparticles, 2013, 02, 32-38.	0.3	12
48	Quartz crystal microbalance modified with Cu(II) stearate and octadecylamine co-ordination chemical compounds for detection of volatile organic compounds. Sensors and Actuators B: Chemical, 2007, 126, 375-381.	4.0	11
49	Morphology of carbon nanotubes, obtained by decomposition of ethylene on nickel nanoparticles at various rates of flow and concentration of C2H4. Theoretical and Experimental Chemistry, 2008, 44, 240-244.	0.2	10
50	Synthesis of Nanosized ZnO/MgO Solid and Its Catalytic Activity for CO Oxidation. Chinese Journal of Catalysis, 2008, 29, 1079-1083.	6.9	10
51	Synthesis and characterization of ZnO/MgO solids prepared by deposition of preformed colloidal ZnO nanoparticles. Materials Letters, 2008, 62, 4094-4096.	1.3	10
52	Kinetic modeling for the conversion of synthesis gas to dimethyl ether on a mixed Cu-ZnO-Al2O3 catalyst with γ-Al2O3. Theoretical and Experimental Chemistry, 2009, 45, 325-330.	0.2	10
53	Catalysis of steam reforming of ethanol by nanosized manganese ferrite for hydrogen production. Theoretical and Experimental Chemistry, 2012, 48, 129-134.	0.2	10
54	Methanol carboxylation over zirconium dioxide: Effect of catalyst phase composition on its acidâ€base spectrum and direction of catalytic transformations. Canadian Journal of Chemical Engineering, 2016, 94, 745-751.	0.9	10

#	Article	IF	CITATIONS
55	Asymptotic Green's functions for time-fractional diffusion equation and their application for anomalous diffusion problem. Physica A: Statistical Mechanics and Its Applications, 2017, 475, 77-81.	1.2	10
56	Non-Fickian Transport in Porous Media: Always Temporally Anomalous?. Transport in Porous Media, 2018, 124, 309-323.	1.2	10
57	Direct fabrication of graphene oxide fiber by injection spinning for flexible and wearable electronics. Journal of Materials Science, 2020, 55, 12065-12081.	1.7	10
58	A kinetic study on the methanol conversion to dimethyl ether over H-ZSM-5 zeolite. Chemical Papers, 2021, 75, 3429-3442.	1.0	10
59	Return map approach to description of the deterministic chaos in cytosolic calcium oscillations. Journal of Biological Physics, 1995, 21, 233-239.	0.7	9
60	Macrokinetics of Chemical Processes on Porous Catalysts Having Regard to Anomalous Diffusion. Theoretical and Experimental Chemistry, 2004, 40, 203-208.	0.2	9
61	Catalytic synthesis of carbon nanotubes from ethylene in the presence of water vapor. Theoretical and Experimental Chemistry, 2006, 42, 234-238.	0.2	9
62	Effect of crystalline modification of the support on the reduction and catalytic properties of Cu/ZrO2 catalysts in the steam reforming of bioethanol. Theoretical and Experimental Chemistry, 2011, 47, 324-330.	0.2	9
63	Effect of zeolite ZSM-5 content on the methanol transport in the ZSM-5/alumina catalysts for methanol-to-olefin reaction. Chemical Engineering Research and Design, 2017, 127, 35-44.	2.7	9
64	Carbon nanotubes catalytic activity in the ethylene hydrogenation. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 804-809.	1.0	9
65	Crossover between Fickian and non-Fickian diffusion in a system with hierarchy. Microporous and Mesoporous Materials, 2019, 282, 22-28.	2.2	9
66	Synthesis of multi-walled carbon nanotubes with controlled inner and outer diameters by ethylene decomposition over Ni/MgO and Co/MgO catalysts. Materials Science-Poland, 2018, 36, 739-747.	0.4	9
67	Activity and stability of Ni/Al2O3 catalysts in carbon dioxide conversion of methane as influenced by alkali metal oxide additives (K2O, Na2O, Li2O). Russian Journal of Applied Chemistry, 2007, 80, 1883-1887.	0.1	8
68	Fractal approach to the CO oxidation on silica porous materials. Chemical Physics Letters, 2008, 460, 492-494.	1.2	8
69	Temporal and Spatial Organization of Chemical and Hydrodynamic Processes. The System Pb ²⁺ â~'Chloriteâ~'Thiourea. Journal of Physical Chemistry A, 2008, 112, 4584-4592.	1.1	8
70	The state of the components in copper–cerium catalysts supported on different oxides. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 603, 191-193.	0.7	8
71	Fractal analysis of carbon nanotube agglomerates obtained by chemical vapor decomposition of ethylene over nickel nanoparticles. Theoretical and Experimental Chemistry, 2009, 45, 103-107.	0.2	8
72	Pore size effect on the methanol anomalous diffusion in the mesoporous catalyst pellets for methanol-to-olefin reaction. International Journal of Heat and Mass Transfer, 2017, 112, 1072-1080.	2.5	8

#	Article	IF	CITATIONS
73	Methanol conversion to olefins on H-ZSM-5/Al2O3 catalysts: kinetic modeling. Reaction Kinetics, Mechanisms and Catalysis, 2018, 123, 247-268.	0.8	8
74	Macroscale modeling the methanol anomalous transport in the porous pellet using the time-fractional diffusion and fractional Brownian motion: A model comparison. Communications in Nonlinear Science and Numerical Simulation, 2019, 79, 104922.	1.7	8
75	Stochastic Resonance in a Bistable Chemical System: The Oxidation of Ascorbic Acid by Oxygen Catalyzed by Copper(ii) Ions. Angewandte Chemie - International Edition, 2000, 39, 4573-4576.	7.2	7
76	Effect of temperature and small amounts of metal ions on transient chaos in the batch Belousov–Zhabotinsky system. Chemical Physics Letters, 2001, 340, 55-61.	1.2	7
77	The effect of oxygen on time-dependent bifurcations in the Belousov–Zhabotinsky oscillating chemical reaction in a batch. Physical Chemistry Chemical Physics, 2005, 7, 1680-1686.	1.3	7
78	Influence of the conditions of manufacture of nanomeric zirconium dioxide, stabilized with yttrium oxide, on its catalytic properties in the oxidation of CO. Theoretical and Experimental Chemistry, 2007, 43, 102-107.	0.2	7
79	Effect of the means of preparation of nanodispersed CuO/MgO catalysts on their activity in the oxidation of CO. Theoretical and Experimental Chemistry, 2008, 44, 172-177.	0.2	7
80	Thiele modulus having regard to the anomalous diffusion in a catalyst pellet. Chaos, Solitons and Fractals, 2018, 109, 58-63.	2.5	7
81	Catalytic two-step process for the production of propylene from bioethanol. Theoretical and Experimental Chemistry, 2019, 55, 50-55.	0.2	7
82	Highly selective hydrogenation of acetylene over reduced graphene oxide carbocatalyst. Materialia, 2021, 18, 101163.	1.3	7
83	Formation of CuS fractal films induced by spatial patterns in self-organized chemically reactive media (H2Ascî—,CuL2+î—,O2î—,MB+î—,HSâ^' system). Chemical Physics Letters, 1995, 241, 360-364.	1.2	6
84	Stirring Effect on Bistability in a CSTR. 1. Experiments and Simulations for the AsO33-/IO3-Reaction. Journal of Physical Chemistry A, 1999, 103, 10859-10865.	1.1	6
85	Effect of NO, CO, and Cl2 on Mixed-Mode Regimes in the Belousovâ^'Zhabotinskyi Oscillating Chemical Reaction in a CSTR. Journal of Physical Chemistry A, 2002, 106, 2505-2511.	1.1	6
86	APPLICATION OF CHEMICAL CHAOS TO ANALYTICAL CHEMISTRY. International Journal of Modeling, Simulation, and Scientific Computing, 2003, 06, 137-153.	0.9	6
87	Catalytic perfomance of rhodium chalcogen halides and rhodium chalcogenides over silica supports in methane oxidative carbonylation. Journal of Natural Gas Chemistry, 2009, 18, 399-406.	1.8	6
88	Structural parameters of carbon nanotubes obtained by the chemical vapor decomposition of ethylene onto nickel nanoparticles deposited on basic supports. Theoretical and Experimental Chemistry, 2010, 46, 296-301.	0.2	6
89	Size effect of Fe nanoparticles supported on carbon nanotubes on their activity and selectivity in the hydrogenation of crotonaldehyde. Theoretical and Experimental Chemistry, 2012, 48, 194-198.	0.2	6
90	Influence of the Composition of Nanosized MFe2O4 Spinels (M = Ni, Co, Mn) on Their Catalytic Properties in the Steam Reforming of Ethanol. Theoretical and Experimental Chemistry, 2013, 49, 185-192.	0.2	6

#	Article	IF	CITATIONS
91	Effect of the Support of Nickel-Containing Catalysts for the Synthesis of Carbon Nanotubes on Their Internal and External Diameters. Theoretical and Experimental Chemistry, 2013, 49, 121-125.	0.2	6
92	Steam Reforming of Ethanol over Manganese and Iron Oxides for Hydrogen Production. Adsorption Science and Technology, 2015, 33, 715-721.	1.5	6
93	Crucial Role of Weak Acid Sites for Catalytic Performance of Zeolites in Ethyl <i>tert</i> -butyl Ether Synthesis. Chemical Engineering Communications, 2017, 204, 937-941.	1.5	6
94	Two-Path Conversion of Methanol to Olefins on H-ZSM-5/Al2O3 Catalyst. Theoretical and Experimental Chemistry, 2017, 53, 130-137.	0.2	6
95	Comparative study of the methane and methanol mass transfer in the mesoporous H-ZSM-5/alumina extruded pellet. Heat and Mass Transfer, 2018, 54, 1913-1924.	1.2	6
96	Catalytic Activity of N-Doped Reduced Graphene Oxide in the Hydrogenation of Ethylene and Acetylene. Theoretical and Experimental Chemistry, 2018, 54, 218-224.	0.2	6
97	Investigation of the anomalous diffusion in the porous media: a spatiotemporal scaling. Heat and Mass Transfer, 2019, 55, 2693-2702.	1.2	6
98	Direct anchoring of Eu3+ complex to derivative surfaces of multi-wall carbon nanotubes (Eu@DSCNTs) for linear fluorescence nanomaterials. Journal of Alloys and Compounds, 2021, 853, 156880.	2.8	6
99	Stirring Effect on Bistability in a CSTR. 2. Theoretical Analysis of the Coalescenceâ^'Redispersion Model for One-Variable Systems. Journal of Physical Chemistry A, 1999, 103, 10866-10873.	1.1	5
100	Structural determination of ceria–zirconia nanosystem doped by Gd. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 575, 91-95.	0.7	5
101	Effect of ZrO2 morphology in copper–cerium–zirconium oxide systems on their catalytic properties in the reaction of co oxidation in hydrogen-rich mixtures. Theoretical and Experimental Chemistry, 2009, 45, 125-130.	0.2	5
102	Effect of acid–base characteristics of ZrO2–Y2O3 on catalytic properties in carboxylation of methanol. Theoretical and Experimental Chemistry, 2009, 45, 271-275.	0.2	5
103	Effect of the size of Fe@Fe3O4 nanoparticles deposited on carbon nanotubes on their oxidation–reduction characteristics. Theoretical and Experimental Chemistry, 2011, 47, 219-224.	0.2	5
104	Catalytic properties of M-Cu/ZrO2 (M = Fe, Co, Ni) in steam reforming of ethanol. Theoretical and Experimental Chemistry, 2013, 48, 386-393.	0.2	5
105	Relationship between yield of hydrogen in steam reforming of ethanol and selectivity with respect to carbon-containing products. Theoretical and Experimental Chemistry, 2013, 49, 109-114.	0.2	5
106	Adsorption—Desorption Dynamics of Alcohols on H-Beta and H-CMK Zeolites Nanocrystallites Studied by Quartz Crystal Microbalance Method. Adsorption Science and Technology, 2014, 32, 807-820.	1.5	5
107	Catalytic Properties of CuFe2O4 in Steam Reforming of Ethanol. Theoretical and Experimental Chemistry, 2015, 51, 230-235.	0.2	5
108	Effect of the Method of Production of Reduced Graphene Oxide on its Catalytic Activity in the Hydrogenation of Ethylene. Theoretical and Experimental Chemistry, 2019, 55, 274-279.	0.2	5

#	Article	IF	CITATIONS
109	Diffusion of C6 cyclic hydrocarbons in ZSM-5 zeolite: From single nanocrystal to packed pellet. Microporous and Mesoporous Materials, 2020, 292, 109773.	2.2	5
110	Strongly enhanced efficiency of polymer solar cells through unzipped SWNT hybridization in the hole transport layer. RSC Advances, 2020, 10, 24847-24854.	1.7	5
111	Advection–diffusion in a porous medium with fractal geometry: fractional transport and crossovers on time scales. Meccanica, 2022, 57, 833-843.	1.2	5
112	Direct Identification of Volatile Organic Vapors in Complex Mixtures: Advanced Chemical Imaging of Analytes by Cross-Reactive Sensor Arrays with Temporal Separation. Sensor Letters, 2014, 12, 1259-1266.	0.4	5
113	Experimental Veriï¬cation of the Time-Fractional Diffusion of Methanol in Silica. Journal of Applied Nonlinear Dynamics, 2017, 6, 135-151.	0.1	5
114	Effect of copper(II) ions on kinetics of ascorbic acid oxidation by methylene blue. Theoretical and Experimental Chemistry, 1995, 30, 239-244.	0.2	4
115	Conditions for Mixed Mode Oscillations and Deterministic Chaos in Nonlinear Chemical Systems. Theoretical and Experimental Chemistry, 2002, 38, 301-307.	0.2	4
116	New coating materials for hydrocarbon discrimination using a multisensor system and gas chromatography. Theoretical and Experimental Chemistry, 2005, 41, 389-394.	0.2	4
117	The effect of fractal dimension of porous catalysts on the activation energy of CO oxidation. Theoretical and Experimental Chemistry, 2007, 43, 50-53.	0.2	4
118	Studies of the Adsorption of Organic Vapours by Metal Stearates and Their Complexes with Octadecylamine in a Flow Impulse Regime by Piezoquartz Sensor Techniques. Adsorption Science and Technology, 2008, 26, 15-28.	1.5	4
119	Stirring Effect on the Belousov-Zhabotinsky Oscillating Chemical Reactions in a Batch. Experimental and Modelling. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 132-140.	0.7	4
120	Porosity and fractality of yttria stabilized zirconia nanopowders obtained by microwave assisted synthesis and calcined at different temperature. Journal of Non-Crystalline Solids, 2010, 356, 941-944.	1.5	4
121	Catalytic properties of RhSe2/Ga/H-ZSM-5 system in the reaction of glycerol dehydration in the gas phase. Russian Journal of Applied Chemistry, 2016, 89, 233-237.	0.1	4
122	Effect of Temperature on the Equilibrium Yield of Propylene in Catalytic Processes of Ethanol Conversion. Theoretical and Experimental Chemistry, 2016, 52, 175-183.	0.2	4
123	Dependence of Structure of Multilayer Graphene Oxide on Degree of Graphitization of Initial Graphite. Theoretical and Experimental Chemistry, 2018, 54, 186-192.	0.2	4
124	Acid–Base and Catalytic Properties of Sulfated Mesoporous Titanium Oxide in Glycerol Oligomerization. Theoretical and Experimental Chemistry, 2020, 56, 199-204.	0.2	4
125	Investigation of the Time-Dependent Transitions Between the Time-Fractional and Standard Diffusion in a Hierarchical Porous Material. Transport in Porous Media, 2020, 133, 497-508.	1.2	4
126	Synthesis of 15- and 18-membered polythiamacrocylic ligands. Chemistry of Heterocyclic Compounds, 1989, 25, 553-555.	0.6	3

#	Article	IF	CITATIONS
127	Biomimetic reduction of copper(II) tetrathia macrocyclic complexes. Inorganica Chimica Acta, 1990, 167, 47-49.	1.2	3
128	Deterministic chaos in chemistry. Theoretical and Experimental Chemistry, 1993, 28, 293-306.	0.2	3
129	Temperature dependence of quantitative characteristics of chaotic regime in Belousov-Zhabotinskii reaction. Theoretical and Experimental Chemistry, 1994, 29, 128-131.	0.2	3
130	Stirring-induced bifurcation driven by the chaotic regime in the Belousov—Zhabotinsky reaction in a CSTR. Chemical Physics Letters, 1995, 243, 540-544.	1.2	3
131	Quantitative studies on the respiratory burst generated in peritoneal macrophages. Journal of Photochemistry and Photobiology B: Biology, 1999, 50, 159-165.	1.7	3
132	Macroscopically structured polymer formation governed by spatial patterns in the Belousov–Zhabotinsky reaction. Chemical Physics Letters, 2002, 363, 534-539.	1.2	3
133	Scalings of mixed-mode regimes in a simple polynomial three-variable model of nonlinear dynamical systems. Chaos, 2003, 13, 112-122.	1.0	3
134	Influence of the fractal nature and dipersity of deposited metal catalysts on the kinetics of the hydrogenation of acetone. Theoretical and Experimental Chemistry, 2007, 43, 108-113.	0.2	3
135	Kinetic models of the molecular mass distribution of the products of the Fischer-Tropsch synthesis at cobalt catalysts. Theoretical and Experimental Chemistry, 2007, 43, 361-379.	0.2	3
136	Effect of temperature on the structural characteristics of zirconium dioxide nanoparticles produced under conditions of microwave treatment. Theoretical and Experimental Chemistry, 2008, 44, 144-149.	0.2	3
137	Size-controlled synthesis of platinum nanoparticles supported on Î ³ -Al2O3 and their thermal stability. Theoretical and Experimental Chemistry, 2013, 48, 376-380.	0.2	3
138	Catalytic Properties of Nanosized Cu/ZrO2 Systems in the Steam Reforming of Bioethanol. Theoretical and Experimental Chemistry, 2014, 50, 46-52.	0.2	3
139	Adsorption–desorption of ethanol on sulfonated resin catalysts for ethyl- <i>tert</i> butyl ether synthesis. Adsorption Science and Technology, 2017, 35, 630-640.	1.5	3
140	Effect of H-ZSM-5/Al2O3 Catalyst Acidity on the Conversion of Methanol. Theoretical and Experimental Chemistry, 2017, 53, 276-282.	0.2	3
141	Catalytic Cracking of Triglycerides on α-FeOOH Nanoparticles. Theoretical and Experimental Chemistry, 2017, 53, 199-203.	0.2	3
142	Effect of ultrasonic treatment of the mechanically mixed nanosized CuO–MgO solids on their catalytic properties in the CO oxidation. Chemical Engineering Communications, 2018, 205, 797-804.	1.5	3
143	Diffusion in hierarchical silica monoliths: impact of pore size and probe molecule. Heat and Mass Transfer, 2020, 56, 3199-3207.	1.2	3
144	A two-step strategy for the selective conversion of ethanol to propene and hydrogen. Chemical Papers, 2021, 75, 5773-5779.	1.0	3

#	Article	IF	CITATIONS
145	Improved Mechanical, Anti-UV Irradiation, and Imparted Luminescence Properties of Cyanate Ester Resin/Unzipped Multiwalled Carbon Nanotubes/Europium Nanocomposites. Materials, 2021, 14, 4244.	1.3	3
146	Kinetics of oxidation of ascorbic acid by methylene blue in acid solutions. Theoretical and Experimental Chemistry, 1994, 29, 283-286.	0.2	2
147	New Approach to Synthesis of Fractal Materials with a given Fractal Dimension. Synthesis and Some Properties of Amorphous Fractal Films of Copper Sulfide. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1995, 99, 1226-1229.	0.9	2
148	<title>Mechanism of in-vivo photodynamic effects</title> . , 1996, , .		2
149	Kinetic scheme for a ferroin-catalyzed belousov-zhabotinskii reaction with compound-period transient states. Theoretical and Experimental Chemistry, 1998, 34, 138-143.	0.2	2
150	Inhomogeneities of CSTR on a Macroscale Due to Spatial Dependence of Micromixing Time:  The BZ Reaction. Journal of Physical Chemistry A, 1998, 102, 188-191.	1.1	2
151	The Effect of Mixing-Induced Noise on Second Order Reactions in a CSTR. Journal of the American Chemical Society, 1998, 120, 1343-1344.	6.6	2
152	Multifractal properties of polycrystalline gold films. , 1999, 3904, 374.		2
153	Influence of ion-exchange and impregnation modification of zeolite X on its catalytic properties in the alkylation of toluene with methanol. Theoretical and Experimental Chemistry, 2006, 42, 37-42.	0.2	2
154	New cluster-type rhodium selenochlorides in oxidative carbonylation of methane. Russian Journal of Applied Chemistry, 2007, 80, 193-200.	0.1	2
155	The effect of fractal dimensionality and dispersion of catalysts on the rate of heterogeneous catalytic reactions involving carbon oxides. Theoretical and Experimental Chemistry, 2007, 43, 287-296.	0.2	2
156	Effect of fractal dimension of zirconium dioxide on its catalytic properties in the oxidation of CO. Theoretical and Experimental Chemistry, 2009, 45, 258-262.	0.2	2
157	Fractality and activity of acid catalysts in the liquid-phase synthesis of ethyl tert-butyl ether. Theoretical and Experimental Chemistry, 2010, 46, 328-333.	0.2	2
158	Activity of copper–cerium–zirconium catalysts in oxidation of hydrogen. Theoretical and Experimental Chemistry, 2011, 47, 251-256.	0.2	2
159	Effect of the Morphology of Sulfo Cation Exchangers on their Catalytic Properties in the Preparation of Ethyl tert-Butyl Ether. Theoretical and Experimental Chemistry, 2014, 49, 376-380.	0.2	2
160	Selectivity of Mesoporous Zirconium-Tungstate Oxide Systems in the Catalytic Conversion of Glycerin to Acrolein. Theoretical and Experimental Chemistry, 2014, 49, 390-395.	0.2	2
161	Physicochemical Properties and Catalytic Performance of Sulphonic Resins of Various Morphological Types in Ethyl t-Butyl Ether Synthesis. Adsorption Science and Technology, 2015, 33, 545-551.	1.5	2
162	Effect of the Size of Iron Nanoparticles on the Catalytic Activity and Selectivity of Fe/Cnt Nanocomposites in Hydrogenolysis of Ethylene. Theoretical and Experimental Chemistry, 2015, 51, 115-121.	0.2	2

Peter E Strizhak

#	Article	IF	CITATIONS
163	Catalytic Properties of Various Types of Sulfonated Cation-Exchange Resins in the Synthesis of Isopropyl Tert-Butyl Ether. Theoretical and Experimental Chemistry, 2015, 51, 127-132.	0.2	2
164	Etherification of Ethanol and iso-Propanol with iso-Butylene Over Sulfonic Resin Catalysts of Various Morphology. Theoretical and Experimental Chemistry, 2016, 52, 184-189.	0.2	2
165	Comparative study of magnesiaâ€supported highlyâ€dispersed CuO solids prepared by different methods in CO oxidation. Canadian Journal of Chemical Engineering, 2017, 95, 1510-1517.	0.9	2
166	Nanosize Effect in Heterogeneous Catalytic Processes Over Copper, Iron, and Zirconium Oxides. Theoretical and Experimental Chemistry, 2017, 53, 305-314.	0.2	2
167	Effect of Acid Site Localization in Sulfonic Resin Amberlyst 15 on its Catalytic Properties in Ethyl tert-butyl Ether Synthesis. Theoretical and Experimental Chemistry, 2017, 53, 138-142.	0.2	2
168	Application of the Time-Fractional Diffusion Equation to Methyl Alcohol Mass Transfer in Silica. Lecture Notes in Electrical Engineering, 2017, , 501-510.	0.3	2
169	An accurate computational method for the diffusion regime verification. Chemical Physics Letters, 2018, 698, 176-180.	1.2	2
170	Modeling methanol transfer in the mesoporous catalyst for the methanol-to-olefins reaction by the time-fractional diffusion equation. Communications in Nonlinear Science and Numerical Simulation, 2018, 57, 359-371.	1.7	2
171	Organic–Inorganic Composites Based on Gel-Type Sulfonic Resin KU-2-8 and Zirconia: Acid and Catalytic Properties in the Etherification Reaction of <i>iso-</i> Butylene with Ethanol. Industrial & Engineering Chemistry Research, 2018, 57, 10859-10865.	1.8	2
172	Sorption and Diffusion of Methanol and Ethanol in Macroporous Sulfonic Resin Amberlyst 15. Theoretical and Experimental Chemistry, 2019, 55, 354-359.	0.2	2
173	A Diffusion Cell for the Mass Transfer Investigation in the Solid Porous Media. International Journal of Chemical Reactor Engineering, 2019, 17, .	0.6	2
174	Development of a Catalyst for Flue Gas Purification from Carbon Monoxide of Multi-Chamber Furnaces for Baking Electrode Blanks. Journal of Ecological Engineering, 2021, 22, 174-187.	0.5	2
175	Extremely high reinforcement of highâ€density polyethylene by low loading of unzipped multiâ€wall carbon nanotubes. Journal of Applied Polymer Science, 2022, 139, 51478.	1.3	2
176	Self-Sustained Flameless Heat Generator Based on Catalytic Oxidation of Methane or Propane-Butane Mixture for Various Object Heating Including Field Heating. Science and Innovation, 2016, 12, 28-40.	0.2	2
177	Processes of Propene Production from Ethanol: Catalysts, Reaction Pathways and Thermodynamic Aspects: A Review. Theoretical and Experimental Chemistry, 0, , .	0.2	2
178	The Lotka—Volterra system's Hamiltonian structure. Classical and quantum properties. Chemical Physics Letters, 1992, 197, 243-246.	1.2	1
179	Effect of radionuclides cesium-137 and strontium-90 on oxidation of ascorbic acid by methylene blue in the presence of copper(II) ions. Theoretical and Experimental Chemistry, 1995, 31, 86-90.	0.2	1

180 Synthesis and properties of CuS fractal films. , 1999, 3904, 386.

#	Article	IF	CITATIONS
181	Effect of fractal dimension of porous catalysts on the macrokinetics of CO oxidation. Theoretical and Experimental Chemistry, 2006, 42, 245-249.	0.2	1
182	The effect of the conditions for the preparation of iron oxide nanoparticles on their catalytic characteristics in the oxidation of CO. Theoretical and Experimental Chemistry, 2006, 42, 308-313.	0.2	1
183	Time dependence of the activity and selectivity of a cobalt-containing catalyst in Fischer-Tropsch synthesis. Theoretical and Experimental Chemistry, 2006, 42, 371-377.	0.2	1
184	Secondary reactions of ethylene and propylene in the Fischer-Tropsch synthesis on cobalt-aluminum and cobalt-chromium catalysts. Theoretical and Experimental Chemistry, 2008, 44, 121-127.	0.2	1
185	Chain termination mechanism in the Fischer-Tropsch synthesis on a Co/SiO2Zr(IV) catalyst at elevated pressure. Theoretical and Experimental Chemistry, 2008, 44, 183-188.	0.2	1
186	Textural and fractal characteristics of nanodispersed zirconium dioxide stabilized by yttrium. Theoretical and Experimental Chemistry, 2008, 44, 345-350.	0.2	1
187	Influence of the nature of alkaline earth element on the catalytic properties of perovskites with the composition La1–3x Li x M2xCoO3±Î′ (M = Ca, Sr, Ba; 0 â‰â€‰x â‰â€‰0.05) in the ox Experimental Chemistry, 2011, 47, 183-187.	id ati on of	C Q. Theoreti
188	Effect of the Carbon Support on the Catalytic Activity of Platinum Nanoparticles in the Water Gas Shift Reaction. Theoretical and Experimental Chemistry, 2015, 51, 236-242.	0.2	1
189	Ferrites MFe2O4 (M = Mg, Mn, Fe, Zn) as Catalysts for Steam Reforming of Ethanol. Theoretical and Experimental Chemistry, 2016, 52, 246-251.	0.2	1
190	Formation of silicon nanoclusters in a gas phase: A thermodynamic study. Chemical Physics Letters, 2019, 731, 136608.	1.2	1
191	Relation of Fractal Characteristics with Structural Parameters of Nanosized ZrO2 Determined by Various Methods. Theoretical and Experimental Chemistry, 2019, 55, 246-249.	0.2	1
192	High-performance composite H-ZSM-5/alumina catalyst for the methanol-to-ethylene conversion. Chemical Engineering Communications, 2022, 209, 579-593.	1.5	1
193	Hydrogen Selectivity in the Steam Reforming of Alcohols. Theoretical and Experimental Chemistry, 2021, 57, 71-76.	0.2	1
194	Current Problems of Nanocatalysis. Visnik Nacional Noi Academii Nauk Ukrai Ni, 2014, , 16-24.	0.0	1
195	Hybrid Inorganic-Organic Acid Materials: Characterization and Catalytic Performance in Ethyl Tert-Butyl-Ether Synthesis. Himia, Fizika Ta Tehnologia Poverhni, 2015, 4, 113-119.	0.2	1
196	Thermodynamic analysis of Al clusters formation over aluminum melt. Physica Scripta, 2021, 96, 125725.	1.2	1
197	Effect of H-ZSM-5 zeolite content on the intrinsic kinetics of methanol dehydration to dimethyl ether over H-ZSM-5/Al2O3 molded catalyst. Reaction Chemistry and Engineering, 0, , .	1.9	1
198	The Created Excellent Thermal, Mechanical and Fluorescent Properties by Doping Eu3+-Complex-Anchored Carbon Nanotubes in Polycyanate Resins. Nanomaterials, 2022, 12, 2040.	1.9	1

#	Article	IF	CITATIONS
199	ESR study on copper(II) macrocyclic polythia complexes. Theoretical and Experimental Chemistry, 1989, 25, 679-683.	0.2	0
200	Space-time chaos in reactions of NADH with atmospheric oxygen in the presence of copper(II) complexes. Theoretical and Experimental Chemistry, 1990, 26, 161-169.	0.2	0
201	Space-time self-organization phenomena in oxidation of various substrates by atmospheric oxygen in aqueous solutions. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 2154-2161.	0.0	0
202	Method for estimating the largest Lyapunov exponent for the chaotic regime in chemical reactions. Theoretical and Experimental Chemistry, 1992, 28, 47-50.	0.2	0
203	Structure of compounds of chromium with 2,2?-bipyridyl that participate in the Belousov-Zhabotinskii oscillating reaction. Theoretical and Experimental Chemistry, 1993, 28, 213-216.	0.2	Ο
204	Description of transient chaotic regimes in the Belousov-Zhabotinskii reaction by means of return maps. Theoretical and Experimental Chemistry, 1993, 28, 349-353.	0.2	0
205	Bifurcation of irregular oscillatory regimes in the Belousov-Zhabotinskii reaction in a closed reactor. Theoretical and Experimental Chemistry, 1993, 28, 360-363.	0.2	0
206	Cellular-automoton model of an autooscillatory chemical reaction in a spatially distributed medium. Theoretical and Experimental Chemistry, 1994, 29, 22-25.	0.2	0
207	Classical and quantum properties of a simple autocatalytic mechanism ? The Lotka-Volterra system. Theoretical and Experimental Chemistry, 1994, 29, 35-40.	0.2	0
208	Effect of copper(II) ions on the chaotic regime of the Belousov-Zhabotinskii reaction. Theoretical and Experimental Chemistry, 1994, 29, 278-282.	0.2	0
209	Kinetics of outer-sphere electron transfer reactions involving synthetic models of copper ?blue"? proteins. Theoretical and Experimental Chemistry, 1994, 30, 22-25.	0.2	0
210	A temperature nonequilibrium phase transition of the chaotic state in the belousov-zhabotinskii reaction in a closed ideal mixing reactor. Theoretical and Experimental Chemistry, 1994, 30, 120-123.	0.2	0
211	Effect of temperature on bifurcation of self-oscillating modes in the Belousov-Zhabotinskii reaction in a continuous-flow stirred-tank reactor. Theoretical and Experimental Chemistry, 1995, 31, 59-64.	0.2	0
212	Quantitative investigation of spatiotemporal chaos in the ferroin-catalyzed Belousov-Zhabotinskii reaction in a batch reactor. Theoretical and Experimental Chemistry, 1995, 31, 32-36.	0.2	0
213	Stochastic resonance in the oxidation of nadh by atmospheric oxygen in the presence of copper(II) aqua ions in a constant-agitation flow-type reactor. Theoretical and Experimental Chemistry, 2000, 36, 88-93.	0.2	0
214	Title is missing!. Theoretical and Experimental Chemistry, 2002, 38, 375-380.	0.2	0
215	Features of the Reaction of the CO Molecule with a Platinum Atom and Its Diatomic Cluster. Theoretical and Experimental Chemistry, 2005, 41, 290-294.	0.2	0
216	Fragmentary kinetic models of the mechanism of the Fischer-Tropsch synthesis. Theoretical and Experimental Chemistry, 2006, 42, 71-89.	0.2	0

#	Article	IF	CITATIONS
217	Sensitivity of metal thiolate piezoquartz sensor coatings to hydrocarbons, methanol, and water. Theoretical and Experimental Chemistry, 2006, 42, 378-383.	0.2	0
218	Small-size ZnO/MgO quantum systems with zinc oxide nanoparticles of controlled size. Theoretical and Experimental Chemistry, 2007, 43, 198-203.	0.2	0
219	Catalytic characteristics of massive and loaded sulfonic resins in the synthesis of ethyl tert-butyl ether at atmospheric and increased pressure. Theoretical and Experimental Chemistry, 2010, 46, 263-267.	0.2	0
220	Size Effect In The Inhibition of the Liquid-Phase Oxidation of Benzyl Alcohol by Iron(III) Oxide-Hydroxide Nanoparticles. Theoretical and Experimental Chemistry, 2014, 50, 304-310.	0.2	0
221	Influence of Size of Platinum Nanoparticles Supported on γ-Al2O3 on Their Catalytic Properties in CO Hydrogenation. Theoretical and Experimental Chemistry, 2014, 50, 232-236.	0.2	0
222	Effect of Chemical Structure and Geometry of Carbon Nanotubes on Electrical and Mechanical Properties of Nanocomposites Based on Cross-Linked Polyurethane. Theoretical and Experimental Chemistry, 2016, 52, 16-20.	0.2	0
223	Heterogeneous Catalytic Production of Nitrogen-Containing Macrotubes from Acetonitrile Using Iron Nanoparticles. Theoretical and Experimental Chemistry, 2016, 52, 170-174.	0.2	Ο
224	Size Effect in Ethylene Hydrogenation over Palladium Catalysts Supported on Î ³ -Al2O3. Theoretical and Experimental Chemistry, 2017, 52, 364-368.	0.2	0
225	Effect of the Size of Chromium(III) Oxide Crystallites Obtained by Thermolysis of a Carboxylate Complex on Their Catalytic Properties in the Oxidation of CO. Theoretical and Experimental Chemistry, 2017, 53, 270-275.	0.2	Ο
226	Effect of Pd0 Content in Palladium Nanoparticles on Their Catalytic Activity in Liquid-Phase Hydrogenation of o-Nitrotoluene. Theoretical and Experimental Chemistry, 2018, 54, 358-363.	0.2	0
227	Synthesis and Thermal Stability of Palladium Nanoparticles Supported on γ-Αl2O3. Current Nanomaterials, 2020, 5, 79-90.	0.2	Ο
228	Simple two-stages synthesis of Ni/P-MWCNTs nanocomposite as efficient catalyst for the hexachlorobenzene electrochemical dechlorination. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 1002-1009.	1.0	0
229	Impact of Coke Deposition on Diffusion of Methanol in a Pellet of Zeolite-Containing Catalyst. Theoretical and Experimental Chemistry, 2020, 56, 124-129.	0.2	0
230	Effect of Composition of Superconducting Cuprates Bi2Sr2–xNdxCaCu2Oy(0â‰ख़ â‰쿄.1) on their Electrophysical Characteristics and Catalytic Properties in Carbon Monoxide Oxidation. Theoretical and Experimental Chemistry, 2020, 56, 130-135.	0.2	0
231	Inhibition Effect of the $\hat{l}\pm$ -FeOOH Nanoparticles in the Benzyl Alcohol Oxidation. Journal of Cluster Science, 0, , 1.	1.7	Ο
232	Use of Metal Oxide-Modified Aerated Concrete for Cleaning Flue Gases from Carbon Monoxide. Journal of Ecological Engineering, 2021, 22, 104-113.	0.5	0
233	Self-Photoluminescence of Unzipped Multi-Walled Carbon Nanotubes. Nanomaterials, 2021, 11, 1632.	1.9	0
234	Highly Selective Hydrogenation of Acetylene Over Reduced Graphene Oxide Carbocatalyst. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
235	Effect of the chemical nature of the support on the structural parameters of carbon nanotubes obtained from ethylene on Ni-, Co- and Fe-containing catalysts. Surface, 2016, 8(23), 147-157.	0.4	0
236	Support effect on the catalytic activity of palladium nanoparticles in the o-nitrotoluene hydrogenation. Reports National Academy of Science of Ukraine, 2017, , 63-69.	0.0	0
237	Anomalous diffusion of methanol in zeolite-containing catalyst for methanol to hydrocarbons conversion. Himia, Fizika Ta Tehnologia Poverhni, 2018, 9, 145-157.	0.2	0

238 ĐœĐ•Đ¢ĐЛОĐšĐ¡Đ[•]ĐІ ĐšĐĐ¢ĐЛІĐ—ĐĐ¢ĐžĐĐ[•] ĐĐ•Đ¡Đ¢ĐĐ£ĐšĐ¢Đ£ĐОВĐĐĐ[•]Đ¥ КЕĐĐĐœĐ†Đ§Đ**Đ**ĩĐ¥ ĐĐ**žĐ**¡Đ†Đ[•]Đ¥

239	Efficient hydrogen production by steam reforming of ethanol over ferrite catalysts. Catalysis and Petrochemistry, 2020, , 1-10.	0.2	0
240	Hybrid organicâ€inorganic acid catalysts: The effect of active sites localization on catalytic characteristics in the processes of alcohols' etherification. A review. Journal of Applied Polymer Science, 2022, 139, 51926.	1.3	0
241	Low-Temperature Hydrogenation of Iron Carbonate Followed By Production of C4-C6 Hydrocarbons. Theoretical and Experimental Chemistry, 2021, 57, 351.	0.2	0
242	Low-Temperature Hydrogenation of Iron Carbonate Followed by Production of C4-C6 Hydrocarbons. Theoretical and Experimental Chemistry, 2021, 57, 351.	0.2	0