Ping Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7314850/publications.pdf

Version: 2024-02-01

172386 206029 2,417 61 29 48 citations h-index g-index papers 61 61 61 2419 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Low-Temperature and High-Energy-Density Li-Based Liquid Metal Batteries Based on LiCl–KCl Molten Salt Electrolyte. ACS Sustainable Chemistry and Engineering, 2022, 10, 1871-1879.	3.2	15
2	Boosting Aqueous Zn/MnO ₂ Batteries via a Synergy of Edge/Defect-Rich Cathode and Dendrite-Free Anode. ACS Applied Materials & Samp; Interfaces, 2022, 14, 4316-4325.	4.0	20
3	Self-healing action of Bi in high-performance Sb–Bi–Sn positive electrodes for liquid metal batteries. Journal of Power Sources, 2022, 538, 231584.	4.0	1
4	High-rate and durable sulfide-based all-solid-state lithium battery with in situ Li2O buffering. Energy Storage Materials, 2022, 51, 306-316.	9.5	33
5	Synchronous nesting of hollow FeP nanospheres into a three-dimensional porous carbon scaffold <i>via</i> a salt-template method for performance-enhanced potassium-ion storage. Sustainable Energy and Fuels, 2021, 5, 844-854.	2.5	12
6	High-performance aqueous Zn–MnO ₂ batteries enabled by the coupling engineering of K ⁺ pre-intercalation and oxygen defects. Journal of Materials Chemistry A, 2021, 9, 15637-15647.	5.2	46
7	Feasibility Research of SS304 Serving as the Positive Current Collector of Li Sb–Sn Liquid Metal Batteries. Journal of Physical Chemistry C, 2021, 125, 237-245.	1.5	11
8	A N-doped porous carbon framework with Ag-nanoparticles toward stable lithium metal anodes. Sustainable Energy and Fuels, 2021, 5, 5638-5644.	2.5	0
9	Sandwichâ€Like Heterostructures of MoS ₂ /Graphene with Enlarged Interlayer Spacing and Enhanced Hydrophilicity as Highâ€Performance Cathodes for Aqueous Zincâ€lon Batteries. Advanced Materials, 2021, 33, e2007480.	11.1	241
10	Confining Pyrrhotite Fe ₇ S ₈ in Carbon Nanotubes Covalently Bonded onto 3D Fewâ€Layer Graphene Boosts Potassiumâ€Ion Storage and Fullâ€Cell Applications. Small, 2021, 17, e2006719.	5.2	39
11	Reaction kinetics in rechargeable zinc-ion batteries. Journal of Power Sources, 2021, 492, 229655.	4.0	48
12	Molecular Engineering on MoS ₂ Enables Large Interlayers and Unlocked Basal Planes for Highâ€Performance Aqueous Znâ€Ion Storage. Angewandte Chemie - International Edition, 2021, 60, 20286-20293.	7.2	141
13	Stable Positive Current Collectors for Li Sb–Sn Liquid Metal Batteries. ACS Applied Energy Materials, 2021, 4, 9013-9021.	2.5	8
14	Molecular Engineering on MoS ₂ Enables Large Interlayers and Unlocked Basal Planes for Highâ€Performance Aqueous Znâ€lon Storage. Angewandte Chemie, 2021, 133, 20448-20455.	1.6	52
15	Enhanced anti-poisoning performance against carbon monoxide of LaNi4.7AlO.3 alloy encapsulated in polymethyl methacrylate. Materials Letters, 2021, 302, 130409.	1.3	5
16	Investigation of the phase occurrence and H sorption properties in the Y33.33Ni66.67Al (0Ââ‰ÂxÂâ‰Â33.33) system. Journal of Alloys and Compounds, 2021, 888, 161375.	2.8	4
17	Dehydrogenation characteristics of ZrC-doped LiAlH4 with different mixing conditions. Rare Metals, 2020, 39, 383-391.	3.6	11
18	Collaborative Design of Hollow Nanocubes, In Situ Crossâ€Linked Binder, and Amorphous Void@SiO <i></i> @C as a Threeâ€Pronged Strategy for Ultrastable Lithium Storage. Small, 2020, 16, e1905736.	5.2	43

#	Article	IF	CITATIONS
19	Achieving Fast and Stable Lithium/Potassium Storage by In Situ Decorating FeSe ₂ Nanodots into Three-Dimensional Hierarchical Porous Carbon Networks. Journal of Physical Chemistry C, 2020, 124, 12185-12194.	1.5	19
20	Marcasite-FeS2@carbon nanodots anchored on 3D cell-like graphenic matrix for high-rate and ultrastable potassium ion storage. Journal of Power Sources, 2020, 469, 228429.	4.0	39
21	A synergetic strategy for an advanced electrode with Fe ₃ O ₄ embedded in a 3D N-doped porous graphene framework and a strong adhesive binder for lithium/potassium ion batteries with an ultralong cycle lifespan. Journal of Materials Chemistry A, 2019, 7, 19430-19441.	5.2	64
22	Tuning Metallic Co0.85Se Quantum Dots/Carbon Hollow Polyhedrons with Tertiary Hierarchical Structure for High-Performance Potassium Ion Batteries. Nano-Micro Letters, 2019, 11, 96.	14.4	51
23	High-throughput fabrication of 3D N-doped graphenic framework coupled with Fe3C@porous graphite carbon for ultrastable potassium ion storage. Energy Storage Materials, 2019, 22, 185-193.	9.5	91
24	Chemically bubbled hollow Fe _x O nanospheres anchored on 3D N-doped few-layer graphene architecture as a performance-enhanced anode material for potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 744-754.	5.2	74
25	Deeply Nesting Zinc Sulfide Dendrites in Tertiary Hierarchical Structure for Potassium Ion Batteries: Enhanced Conductivity from Interior to Exterior. ACS Nano, 2019, 13, 6906-6916.	7.3	139
26	The multi-yolk/shell structure of FeP@foam-like graphenic scaffolds: strong P–C bonds and electrolyte- and binder-optimization boost potassium storage. Journal of Materials Chemistry A, 2019, 7, 15673-15682.	5.2	69
27	Strong (001) facet-induced growth of multi-hierarchical tremella-like Sn-doped V _{0₅ for high-performance potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 25993-26001.}	5.2	18
28	Bifunctional biomass-derived N, S dual-doped ladder-like porous carbon for supercapacitor and oxygen reduction reaction. Journal of Alloys and Compounds, 2019, 773, 11-20.	2.8	80
29	Bifunctional biomass-derived 3D nitrogen-doped porous carbon for oxygen reduction reaction and solid-state supercapacitor. Applied Surface Science, 2019, 465, 303-312.	3.1	89
30	Thermal properties and cycling performance of Ca(BH4)2/MgH2 composite for energy storage. Chemical Physics Letters, 2018, 700, 44-49.	1.2	12
31	Thickness controllable and mass produced WC@C@Pt hybrid for efficient hydrogen production. Energy Storage Materials, 2018, 10, 268-274.	9.5	28
32	Enhanced hydrogen storage properties of 1.1MgH ₂ â€"0.1LiBH ₄ system with LaNi ₅ -based alloy hydrides addition. RSC Advances, 2018, 8, 40647-40654.	1.7	9
33	Zero-strain K _{0.6} Mn ₁ F _{2.7} hollow nanocubes for ultrastable potassium ion storage. Energy and Environmental Science, 2018, 11, 3033-3042.	15.6	87
34	Low-temperature combustion synthesis of hexagonal WO3·0.33H2O@C as anode material for lithium ion batteries. Journal of Alloys and Compounds, 2017, 701, 215-221.	2.8	16
35	Improved dehydrogenation performance of NaAlH 4 using NiFe 2 O 4 nanoparticles. Journal of Alloys and Compounds, 2017, 709, 850-856.	2.8	30
36	Investigation on LiBH4-CaH2 composite and its potential for thermal energy storage. Scientific Reports, 2017, 7, 41754.	1.6	22

#	Article	IF	CITATIONS
37	Catalytic effect of MnFe ₂ O ₄ on dehydrogenation kinetics of NaAlH ₄ –MgH ₂ . RSC Advances, 2017, 7, 34522-34529.	1.7	10
38	Facile preparation of hexagonal WO 3 \hat{A} -0.33H 2 O/C nanostructures and its electrochemical properties for lithium-ion batteries. Applied Surface Science, 2017, 394, 70-77.	3.1	41
39	Cell sorting for parallel lithium-ion battery systems: Evaluation based on an electric circuit model. Journal of Energy Storage, 2016, 6, 195-203.	3.9	47
40	A study of metal hydride as novel thermal energy storage material by using rapid solidification. Journal of Alloys and Compounds, 2016, 689, 641-647.	2.8	12
41	Rate dependence of cell-to-cell variations of lithium-ion cells. Scientific Reports, 2016, 6, 35051.	1.6	34
42	Superior Catalytic Effect of Nickel Ferrite Nanoparticles in Improving Hydrogen Storage Properties of MgH ₂ . Journal of Physical Chemistry C, 2015, 119, 2925-2934.	1.5	55
43	Amorphous carbon modified nano-sized tungsten carbide as a gas diffusion electrode catalyst for the oxygen reduction reaction. RSC Advances, 2015, 5, 70743-70748.	1.7	13
44	Dehydrogenation mechanism of ball-milled MgH 2 doped with ferrites (CoFe 2 O 4 , ZnFe 2 O 4 , MnFe 2) Tj ETÇ	9000 rgE	3T /Qverlock 1
45	Superior destabilization effects of LiBH4 with the addition of nano-sized nickel ferrite NiFe2O4. RSC Advances, 2015, 5, 81212-81219.	1.7	25
46	The development of metal hydrides using as concentrating solar thermal storage materials. Frontiers of Materials Science, 2015, 9, 317-331.	1.1	20
47	Cycling Stability Performance of La0.75Mg0.25Ni3.5Si0.10 Hydrogen Storage Alloy in Discharge–Charge System. International Journal of Nanoscience, 2014, 13, 1460003.	0.4	0
48	Enhanced hydrogen storage properties of LiAlH ₄ catalyzed by CoFe ₂ O ₄ nanoparticles. RSC Advances, 2014, 4, 18989-18997.	1.7	40
49	Significantly improved dehydrogenation of ball-milled MgH2 doped with CoFe2O4 nanoparticles. Journal of Power Sources, 2014, 268, 778-786.	4.0	49
50	CO impurities effect on LaNi4.7Al0.3 hydrogen storage alloy hydrogenation/dehydrogenation properties. Bulletin of Materials Science, 2014, 37, 837-842.	0.8	5
51	NbCl5 and CrCl3 catalysts effect on synthesis and hydrogen storage performance of Mg–Ni–NiO composites. Bulletin of Materials Science, 2014, 37, 77-82.	0.8	3
52	Study of the hydrogen-induced amorphization in the LaNi2.28 alloy. RSC Advances, 2014, 4, 27207-27212.	1.7	1
53	NaAlH4 dehydrogenation properties enhanced by MnFe2O4 nanoparticles. Journal of Power Sources, 2014, 248, 388-395.	4.0	27
54	Tungsten carbide synthesized by low-temperature combustion as gas diffusion electrode catalyst. International Journal of Hydrogen Energy, 2014, 39, 10911-10920.	3.8	14

PING LI

#	ARTICLE	IF	CITATION
55	Dehydrogenation Improvement of LiAlH ₄ Catalyzed by Fe ₂ O ₃ and Co ₂ O ₃ Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 18343-18352.	1.5	64
56	Improved Hydrogen Storage Performance of MgH ₂ â€"LiAlH ₄ Composite by Addition of MnFe ₂ O ₄ . Journal of Physical Chemistry C, 2013, 117, 26940-26947.	1.5	29
57	MgH2 dehydrogenation properties improved by MnFe2O4 nanoparticles. Journal of Power Sources, 2013, 239, 201-206.	4.0	66
58	NiFe2O4 Nanoparticles Catalytic Effects of Improving LiAlH4 Dehydrogenation Properties. Journal of Physical Chemistry C, 2013, 117, 25917-25925.	1.5	50
59	NbF ₅ and CrF ₃ Catalysts Effects on Synthesis and Hydrogen Storage Performance of Mg-Ni-NiO Composites. Advanced Materials Research, 2013, 681, 31-37.	0.3	1
60	Significantly Improved Dehydrogenation of LiAlH ₄ Destabilized by MnFe ₂ O ₄ Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 11939-11945.	1.5	83
61	Structure and electrochemical hydrogen storage characteristics of the as-cast and annealed La0.8-xSmxMg0.2Ni3.15Co0.2Al0.1Si0.05 (x=0-0.4) alloys. Journal of Rare Earths, 2012, 30, 696-704.	2.5	20