Brian R Jordan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7314847/publications.pdf Version: 2024-02-01

RDIAN P LODDAN

#	Article	IF	CITATIONS
1	The Evolution of Flavonoid Biosynthesis: A Bryophyte Perspective. Frontiers in Plant Science, 2020, 11, 7.	3.6	126
2	Auronidins are a previously unreported class of flavonoid pigments that challenges when anthocyanin biosynthesis evolved in plants. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20232-20239.	7.1	63
3	Genetic analysis of the liverwort <i>Marchantia polymorpha</i> reveals that R2R3 <scp>MYB</scp> activation of flavonoid production in response to abiotic stress is an ancient character in land plants. New Phytologist, 2018, 218, 554-566.	7.3	98
4	Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading. BMC Plant Biology, 2018, 18, 233.	3.6	84
5	UVR8â€mediated induction of flavonoid biosynthesis for UVB tolerance is conserved between the liverwort <i>Marchantia polymorpha</i> and flowering plants. Plant Journal, 2018, 96, 503-517.	5.7	93
6	Comparisons of controlled environment and vineyard experiments in Sauvignon blanc grapes reveal similar UV-B signal transduction pathways for flavonol biosynthesis. Plant Science, 2018, 276, 44-53.	3.6	13
7	The effects of ultraviolet-B on Vitis vinifera - how important is UV-B for grape biochemical composition?. , 2017, , 144-161.		4
8	Methoxypyrazine Accumulation and <i>O</i> -Methyltransferase Gene Expression in Sauvignon blanc Grapes: The Role of Leaf Removal, Light Exposure, and Berry Development Journal of Agricultural and Food Chemistry, 2016, 64, 2200-2208.	5.2	30
9	From <scp>UVR</scp> 8 to flavonol synthase: <scp>UV</scp> â€ <scp>B</scp> â€induced gene expression in <scp>S</scp> auvignon blanc grape berry. Plant, Cell and Environment, 2015, 38, 905-919.	5.7	109
10	From ozone depletion to agriculture: understanding the role of <scp>UV</scp> radiation in sustainable crop production. New Phytologist, 2013, 197, 1058-1076.	7.3	159
11	Isolation and characterization of bacteriophages infecting Xanthomonas arboricola pv. juglandis, the causal agent of walnut blight disease. World Journal of Microbiology and Biotechnology, 2012, 28, 1917-1927.	3.6	21
12	ldentification of the lipoxygenase gene family from Vitis vinifera and biochemical characterisation of two 13-lipoxygenases expressed in grape berries of Sauvignon Blanc. Functional Plant Biology, 2010, 37, 767.	2.1	126
13	Deletion mapping of genetic regions associated with apomixis in Hieracium. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18650-18655.	7.1	138
14	Biotechnology of floral development , 2006, , 237-266.		2
15	Plant Responses to Stress: Ultravioletâ€B Light. , 2004, , 1019-1022.		0
16	Review: Molecular response of plant cells to UV-B stress. Functional Plant Biology, 2002, 29, 909.	2.1	165
17	Anthocyanin and antioxidant capacity in Roselle (Hibiscus Sabdariffa L.) extract. Food Research International, 2002, 35, 351-356.	6.2	295
18	Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Letters, 2001, 489, 237-242.	2.8	375

Brian R Jordan

#	Article	IF	CITATIONS
19	Multivariate analysis of intraspecific responses to UV-B radiation in white clover (Trifolium repens) Tj ETQq1 1	0.784314 rgB	T_/Overlock
20	Ultravioletâ€B exposure leads to upâ€regulation of senescenceâ€associated genes in Arabidopsis thaliana. Journal of Experimental Botany, 2001, 52, 1367-1373.	4.8	78
21	Responses of Nine Trifolium repens L. Populations to Ultraviolet-B Radiation: Differential Flavonol Glycoside Accumulation and Biomass Production. Annals of Botany, 2000, 86, 527-537.	2.9	110
22	Changes in Gene Expression in Response to Ultraviolet B–Induced Stress. Books in Soils, Plants, and the Environment, 1999, , 749-768.	0.1	17
23	Effects of Supplementary Ultraviolet-B Radiation on Photosynthetic Transcripts at Different Stages of Leaf Development and Light Levels in Pea (Pisum sativum L.): Role of Active Oxygen Species and Antioxidant Enzymes Photochemistry and Photobiology, 1998, 68, 88-96.	2.5	78
24	UVB Radiation Induced Increase in Quercetin: Kaempferol Ratio in Wildâ€Type and Transgenic Lines of Petunia. Photochemistry and Photobiology, 1998, 68, 323-330.	2.5	51
25	Individual members of the light-harvesting complex II chlorophyll a/b -binding protein gene family in pea (Pisum sativum) show differential responses to ultraviolet-B radiation. Physiologia Plantarum, 1998, 103, 377-384.	5.2	9
26	Effects of Supplementary Ultraviolet-B Radiation on Photosynthetic Transcripts at Different Stages of Leaf Development and Light Levels in Pea (Pisum sativum L.): Role of Active Oxygen Species and Antioxidant Enzymes Photochemistry and Photobiology, 1998, 68, 88.	2.5	47
27	UVB Radiation Induced Increase in Quercetin:Kaempferol Ratio in Wild-Type and Transgenic Lines of Petunia. Photochemistry and Photobiology, 1998, 68, 323.	2.5	87
28	The effect of supplementary ultraviolet-B radiation on mRNA transcripts, translation and stability of chloroplast proteins and pigment formation in Pisum sativum L Journal of Experimental Botany, 1997, 48, 729-738.	4.8	47
29	Floral flavonoids and pH in Dendrobium orchid species and hybrids. Euphytica, 1997, 95, 187-194.	1.2	27
30	The Effects of Ultraviolet-B Radiation on Plants: A Molecular Perspective. Advances in Botanical Research, 1996, 22, 97-162.	1.1	232
31	Amelioration of Ultraviolet-B-Induced Down-Regulation of mRNA Levels for Chloroplast Proteins, by High Irradiance, is Mediated by Photosynthesis. Journal of Plant Physiology, 1996, 148, 100-106.	3.5	40
32	The effects of ultraviolet-B radiation on the CF0F1-ATPase. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1185, 295-302.	1.0	36
33	Cloning and sequence analysis of aflo/lfy homologue isolated from cauliflower (Brassica oleracea L.) Tj ETQq1	1 0.784314 rg	BT /Overloo
34	Effect of Nicotinamide on Gene Expression and Glutathione Levels in Tissue Cultures of Pisum sativum. Journal of Plant Physiology, 1993, 142, 676-684.	3.5	22
35	The Molecular Biology of Plants Exposed to Ultraviolet-B Radiation and the Interaction with Other Stresses. , 1993, , 153-170.		18
36	Reduction incabandpsbA RNA transcripts in response to supplementary ultraviolet-B radiation. FEBS Letters, 1991, 284, 5-8.	2.8	95

Brian R Jordan

#	Article	IF	CITATIONS
37	Changes to the Stoichiometry of Glycine Decarboxylase Subunits during Wheat (Triticum aestivum L.) and Pea (Pisum sativum L.) Leaf Development. Plant Physiology, 1991, 96, 952-956.	4.8	32
38	Factors Affecting Phytochrome Transcripts and Apoprotein Synthesis in Germinating Embryos ofAvena sativaL Journal of Experimental Botany, 1989, 40, 1299-1304.	4.8	12
39	Chloroplast gene expression in lettuce grown under different irradiances. Planta, 1989, 178, 69-75.	3.2	22
40	The role of phospholipids in the molecular organisation of pea chloroplast membranes. Effect of phospholipid depletion on photosynthetic activities. Biochimica Et Biophysica Acta - Bioenergetics, 1983, 725, 77-86.	1.0	68
41	Effects of Light and Inhibitors on Glutamate Metabolism in Leaf Discs of Vicia faba L. Plant Physiology, 1979, 64, 1043-1047.	4.8	30