Isabel Miranda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7314772/publications.pdf

Version: 2024-02-01

257357 302012 1,760 59 24 39 h-index citations g-index papers 59 59 59 1785 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition. Biomass Conversion and Biorefinery, 2020, 10, 175-188.	2.9	122
2	Chemical characterization of barks from Picea abies and Pinus sylvestris after fractioning into different particle sizes. Industrial Crops and Products, 2012, 36, 395-400.	2.5	119
3	Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. Industrial Crops and Products, 2013, 41, 299-305.	2.5	113
4	The chemical composition of cork and phloem in the rhytidome of Quercus cerris bark. Industrial Crops and Products, 2010, 31, 417-422.	2.5	102
5	Evaluation of oil composition of some crops suitable for human nutrition. Industrial Crops and Products, 2006, 24, 75-78.	2.5	87
6	Wood properties of teak (Tectona grandis) from a mature unmanaged stand in East Timor. Journal of Wood Science, 2011, 57, 171-178.	0.9	72
7	Valorization of lignocellulosic residues from the olive oil industry by production of lignin, glucose and functional sugars. Bioresource Technology, 2019, 292, 121936.	4.8	53
8	Variation of pulpwood quality with provenances and site in Eucalyptus globulus. Annals of Forest Science, 2002, 59, 283-291.	0.8	52
9	The bark of Eucalyptus sideroxylon as a source of phenolic extracts with anti-oxidant properties. Industrial Crops and Products, 2016, 82, 81-87.	2.5	52
10	Selective fractioning of Pseudotsuga menziesii bark and chemical characterization in view of an integrated valorization. Industrial Crops and Products, 2015, 74, 998-1007.	2.5	51
11	Cellular structure and chemical composition of cork from the Chinese cork oak (Quercus variabilis). Journal of Wood Science, 2013, 59, 1-9.	0.9	50
12	Chemical characterization and extractives composition of heartwood and sapwood from Quercus faginea. PLoS ONE, 2017, 12, e0179268.	1.1	48
13	Chemical and fuel properties of stumps biomass from Eucalyptus globulus plantations. Industrial Crops and Products, 2012, 39, 12-16.	2.5	42
14	Characterisation and fractioning of Tectona grandis bark in view of its valorisation as a biorefinery raw-material. Industrial Crops and Products, 2013, 50, 166-175.	2.5	41
15	Provenance and site variation of wood density in Eucalyptus globulus Labill. at harvest age and its relation to a non-destructive early assessment. Forest Ecology and Management, 2001, 149, 235-240.	1.4	35
16	Characterization of crop residues from false banana /Ensete ventricosum/ in Ethiopia in view of a full-resource valorization. PLoS ONE, 2018, 13, e0199422.	1.1	35
17	Chemical composition of barks from Quercus faginea trees and characterization of their lipophilic and polar extracts. PLoS ONE, 2018, 13, e0197135.	1.1	35
18	Chemical characterization of cork and phloem from Douglas fir outer bark. Holzforschung, 2016, 70, 475-483.	0.9	34

#	Article	IF	CITATIONS
19	Chemical and cellular features of virgin and reproduction cork from Quercus variabilis. Industrial Crops and Products, 2016, 94, 638-648.	2.5	31
20	Chemical characterization of the bark of <i>Eucalyptus urophylla </i> hybrids in view of their valorization in biorefineries. Holzforschung, 2016, 70, 819-828.	0.9	28
21	The influence of irrigation and fertilization on heartwood and sapwood contents in 18-year-old Eucalyptus globulus trees. Canadian Journal of Forest Research, 2006, 36, 2675-2683.	0.8	27
22	Variability in oil content and composition and storage stability of seeds from Jatropha curcas L. grown in Mozambique. Industrial Crops and Products, 2013, 50, 828-837.	2.5	27
23	Pulping Yield and Delignification Kinetics of Heartwood and Sapwood of Maritime Pine. Journal of Wood Chemistry and Technology, 2005, 25, 217-230.	0.9	26
24	Cellular structure and chemical composition of cork from Plathymenia reticulata occurring in the Brazilian Cerrado. Industrial Crops and Products, 2016, 90, 65-75.	2.5	26
25	Kinetics of ASAM and Kraft Pulping of Eucalypt Wood (Eucalyptus globulus). Holzforschung, 2002, 56, 85-90.	0.9	25
26	Within-Tree Variation in Wood Fibre Biometry And Basic Density of the Urograndis Eucalypt Hybrid (Eucalyptus Grandis × E. Urophylla). IAWA Journal, 2006, 27, 243-254.	2.7	25
27	Temperature-induced structural and chemical changes in cork from Quercus cerris. Industrial Crops and Products, 2012, 37, 508-513.	2.5	25
28	Variation of heartwood and sapwood in 18-year-old Eucalyptus globulus trees grown with different spacings. Trees - Structure and Function, 2009, 23, 367-372.	0.9	22
29	<i>Copaifera langsdorffii</i> Bark as a Source of Chemicals: Structural and Chemical Characterization. Journal of Wood Chemistry and Technology, 2016, 36, 305-317.	0.9	21
30	Chemical and anatomical characterization, and antioxidant properties of barks from 11 Eucalyptus species. European Journal of Wood and Wood Products, 2018, 76, 783-792.	1.3	21
31	Bark anatomy, chemical composition and ethanol-water extract composition of Anadenanthera peregrina and Anadenanthera colubrina. PLoS ONE, 2017, 12, e0189263.	1.1	21
32	Cork oak and climate change: Disentangling drought effects on cork chemical composition. Scientific Reports, 2020, 10, 7800.	1.6	20
33	Modeling and optimization of laboratory-scale conditioning of Jatropha curcas L. seeds for oil expression. Industrial Crops and Products, 2016, 83, 614-619.	2.5	19
34	Chemical characterization, bioactive and fuel properties of waste cork and phloem fractions from Quercus cerris L. bark. Industrial Crops and Products, 2020, 157, 112909.	2.5	19
35	Storage stability of Jatropha curcas L. oil naturally rich in gamma-tocopherol. Industrial Crops and Products, 2015, 64, 188-193.	2.5	18
36	REMOVAL OF CHROMIUM (VI) IN AQUEOUS ENVIRONMENTS USING CORK AND HEAT-TREATED CORK SAMPLES FROM QUERCUS CERRIS AND QUERCUS SUBER. BioResources, 2012, 7, .	0.5	17

#	Article	IF	CITATIONS
37	Chemical Composition of Cuticular Waxes and Pigments and Morphology of Leaves of Quercus suber Trees of Different Provenance. Plants, 2020, 9, 1165.	1.6	17
38	Pinewood nematode population growth in relation to pine phloem chemical composition. Plant Pathology, 2017, 66, 856-864.	1.2	15
39	Quercus rotundifolia Bark as a Source of Polar Extracts: Structural and Chemical Characterization. Forests, 2021, 12, 1160.	0.9	14
40	Chemical and structural characterization of the bark of Albizia niopoides trees from the Amazon. Wood Science and Technology, 2016, 50, 677-692.	1.4	13
41	Bark Characterisation of the Brazilian Hardwood Goupia glabra in Terms of Its Valorisation. BioResources, 2016, 11, .	0.5	12
42	Chemical composition and cellular structure of ponytail palm (Beaucarnea recurvata) cork. Industrial Crops and Products, 2018, 124, 845-855.	2.5	12
43	Cistus ladanifer as a source of chemicals: structural and chemical characterization. Biomass Conversion and Biorefinery, 2020, 10, 325-337.	2.9	12
44	Chemical composition of lipophilic extractives from six Eucalyptus barks. Wood Science and Technology, 2018, 52, 1685-1699.	1.4	11
45	Low-temperature biochars from cork-rich and phloem-rich wastes: fuel, leaching, and methylene blue adsorption properties. Biomass Conversion and Biorefinery, 2022, 12, 3899-3909.	2.9	11
46	Pattern recognition as a tool to discriminate softwood and hardwood bark fractions with different particle size. Wood Science and Technology, 2014, 48, 1197-1211.	1.4	9
47	Fractioning of bark of Pinus pinea by milling and chemical characterization of the different fractions. Maderas: Ciencia Y Tecnologia, 2017, , 0-0.	0.7	9
48	Phytochemical characterization of phloem in maritime pine and stone pine in three sites in Portugal. Heliyon, 2021, 7, e06718.	1.4	9
49	Age Variation of Douglas-Fir Bark Chemical Composition. Journal of Wood Chemistry and Technology, 2018, 38, 385-396.	0.9	8
50	Chemical composition of leaf cutin in six Quercus suber provenances. Phytochemistry, 2021, 181, 112570.	1.4	8
51	Heartwood, sapwood and bark variation in coppiced <i>Eucalyptus globulus</i> trees in 2nd rotation and comparison with the single-stem 1st rotation. Silva Fennica, 2015, 49, .	0.5	8
52	Composition and antioxidant properties of extracts from Douglas fir bark. Holzforschung, 2021, 75, 677-687.	0.9	7
53	Characterization of Hakea sericea Fruits Regarding Chemical Composition and Extract Properties. Waste and Biomass Valorization, 2020, 11, 4859-4870.	1.8	6
54	Low-temperature pyrolysis products of waste cork and lignocellulosic biomass: product characterization. Biomass Conversion and Biorefinery, 2023, 13, 2267-2277.	2.9	6

#	Article	IF	CITATIONS
55	Variation of wood and bark density and production in coppiced Eucalyptus globulus trees in a second rotation. IForest, 2016, 9, 270-275.	0.5	6
56	Family effects in heartwood content of Eucalyptus globulus L European Journal of Forest Research, 2014, 133, 81-87.	1.1	4
57	Chemical characterization, hardness and termite resistance of Quercus cerris heartwood from Kosovo. Maderas: Ciencia Y Tecnologia, 2018, , 0-0.	0.7	1
58	Bark characterization of a commercial Eucalyptus urophylla hybrid clone in view of its potential use as a biorefinery raw material. Biomass Conversion and Biorefinery, $0, 1$.	2.9	1
59	Cutin extraction and composition determined under differing depolymerisation conditions in cork oak leaves. Phytochemical Analysis, 2021, , .	1.2	0