
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7314771/publications.pdf Version: 2024-02-01

REATRIZ RAMOS

#	Article	IF	CITATIONS
1	The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, 2001, 111, 206-211.	5.2	497
2	Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek, 2013, 104, 321-330.	1.7	210
3	Protection Against Pathogen and Salt Stress by Four Plant Growth-Promoting Rhizobacteria Isolated from <i>Pinus</i> sp. on <i>Arabidopsis thaliana</i> . Phytopathology, 2008, 98, 666-672.	2.2	158
4	Combined Application of the Biological Product LS213 with Bacillus, Pseudomonas or Chryseobacterium for Growth Promotion and Biological Control of Soil-Borne Diseases in Pepper and Tomato. BioControl, 2006, 51, 245-258.	2.0	133
5	Use of two PGPR strains in the integrated management of blast disease in rice (Oryza sativa) in Southern Spain. Field Crops Research, 2009, 114, 404-410.	5.1	106
6	Systemic Disease Protection Elicited by Plant Growth Promoting Rhizobacteria Strains: Relationship Between Metabolic Responses, Systemic Disease Protection, and Biotic Elicitors. Phytopathology, 2008, 98, 451-457.	2.2	98
7	Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Applied Soil Ecology, 2002, 20, 75-84.	4.3	97
8	Transgenic tomato plants alter quorum sensing in plant growthâ€promoting rhizobacteria. Plant Biotechnology Journal, 2008, 6, 442-452.	8.3	97
9	Beneficial rhizobacteria from rice rhizosphere confers high protection against biotic and abiotic stress inducing systemic resistance in rice seedlings. Plant Physiology and Biochemistry, 2014, 82, 44-53.	5.8	95
10	Effects of inoculation with PGPR Bacillus and Pisolithus tinctorius on Pinus pinea L. growth, bacterial rhizosphere colonization, and mycorrhizal infection. Microbial Ecology, 2001, 41, 140-148.	2.8	74
11	Application of Pseudomonas fluorescens to Blackberry under Field Conditions Improves Fruit Quality by Modifying Flavonoid Metabolism. PLoS ONE, 2015, 10, e0142639.	2.5	74
12	Effect of inoculation ofBacillus licheniformison tomato and pepper. Agronomy for Sustainable Development, 2004, 24, 169-176.	0.8	68
13	Siderophore and chitinase producing isolates from the rhizosphere of Nicotiana glauca Graham enhance growth and induce systemic resistance in Solanum lycopersicum L Plant and Soil, 2010, 334, 189-197.	3.7	66
14	RNA-Seq analysis and transcriptome assembly for blackberry (Rubus sp. Var. Lochness) fruit. BMC Genomics, 2015, 16, 5.	2.8	62
15	Priming of pathogenesis related-proteins and enzymes related to oxidative stress by plant growth promoting rhizobacteria on rice plants upon abiotic and biotic stress challenge. Journal of Plant Physiology, 2015, 188, 72-79.	3.5	60
16	Elicitation of secondary metabolism in <i>Hypericum perforatum</i> by rhizosphere bacteria and derived elicitors in seedlings and shoot cultures. Pharmaceutical Biology, 2012, 50, 1201-1209.	2.9	52
17	Effect of inoculation with putative plant growth-promoting rhizobacteria isolated from <i>Pinus</i> spp. on <i>Pinus pinea</i> growth, mycorrhization and rhizosphere microbial communities. Journal of Applied Microbiology, 2008, 105, 1298-1309.	3.1	51
18	Effects of Culture Filtrates of Rhizobacteria Isolated from Wild Lupine on Germination, Growth, and Biological Nitrogen Fixation of Lupine Seedlings. Journal of Plant Nutrition, 2003, 26, 1101-1115.	1.9	50

#	Article	IF	CITATIONS
19	Screening for Putative PGPR to Improve Establishment of the Symbiosis Lactarius deliciosus-Pinus sp Microbial Ecology, 2005, 50, 82-89.	2.8	49
20	Genetic variability of rhizobacteria from wild populations of fourLupinus species based on PCR-RAPDs§. Journal of Plant Nutrition and Soil Science, 2001, 164, 1-7.	1.9	47
21	Alterations in the rhizobacterial community associated with European alder growth when inoculated with PGPR strain Bacillus licheniformis. Environmental and Experimental Botany, 2003, 49, 61-68.	4.2	44
22	Elicitation of systemic resistance and growth promotion of Arabidopsis thaliana by PGPRs from Nicotiana glauca: a study of the putative induction pathway. Plant and Soil, 2007, 290, 43-50.	3.7	42
23	Transcriptomics, Targeted Metabolomics and Gene Expression of Blackberry Leaves and Fruits Indicate Flavonoid Metabolic Flux from Leaf to Red Fruit. Frontiers in Plant Science, 2017, 8, 472.	3.6	41
24	Biotic Elicitation of Isoflavone Metabolism with Plant Growth Promoting Rhizobacteria in Early Stages of Development in <i>Glycine max</i> var. Osumi. Journal of Agricultural and Food Chemistry, 2010, 58, 1484-1492.	5.2	39
25	The role of isoflavone metabolism in plant protection depends on theÂrhizobacterial MAMP that triggers systemic resistance against Xanthomonas axonopodis pv. glycines in Glycine max (L.) Merr. cv. Osumi. Plant Physiology and Biochemistry, 2014, 82, 9-16.	5.8	37
26	The inhibitory potential of Montmorency tart cherry on key enzymes relevant to type 2 diabetes and cardiovascular disease. Food Chemistry, 2018, 252, 142-146.	8.2	37
27	Enhanced blackberry production using Pseudomonas fluorescens as elicitor. Agronomy for Sustainable Development, 2013, 33, 385-392.	5.3	35
28	Systemic induction of the biosynthesis of terpenic compounds inDigitalis lanata. Journal of Plant Physiology, 2003, 160, 105-113.	3.5	31
29	Annual changes in bioactive contents and production in field-grown blackberry after inoculation with Pseudomonas fluorescens. Plant Physiology and Biochemistry, 2014, 74, 1-8.	5.8	30
30	Pseudomonas fluorescens N21.4 Metabolites Enhance Secondary Metabolism Isoflavones in Soybean (Glycine max) Calli Cultures. Journal of Agricultural and Food Chemistry, 2012, 60, 11080-11087.	5.2	28
31	Structural and functional study in the rhizosphere of <i>Oryza sativa</i> L. plants growing under biotic and abiotic stress. Journal of Applied Microbiology, 2013, 115, 218-235.	3.1	26
32	Bacterial Bioeffectors Modify Bioactive Profile and Increase Isoflavone Content in Soybean Sprouts (Glycine max var Osumi). Plant Foods for Human Nutrition, 2013, 68, 299-305.	3.2	26
33	Microbe associated molecular patterns from rhizosphere bacteria trigger germination and Papaver somniferum metabolism under greenhouse conditions. Plant Physiology and Biochemistry, 2014, 74, 133-140.	5.8	26
34	Combined phytoremediation of metal-working fluids with maize plants inoculated with different microorganisms and toxicity assessment of the phytoremediated waste. Chemosphere, 2013, 90, 2654-2661.	8.2	24
35	Screening for PGPR to improve growth of Cistus ladanifer seedlings for reforestation of degraded mediterranean ecosystems. Plant and Soil, 2006, 287, 59-68.	3.7	23
36	Bacillus spp. and Pisolithus tinctorius effects on Quercus ilex ssp. ballota: a study on tree growth, rhizosphere community structure and mycorrhizal infection. Forest Ecology and Management, 2004, 194, 293-303.	3.2	21

#	Article	IF	CITATIONS
37	Bacterial bioeffectors delay postharvest fungal growth and modify total phenolics, flavonoids and anthocyanins in blackberries. LWT - Food Science and Technology, 2015, 61, 437-443.	5.2	19
38	Elicitation with Bacillus QV15 reveals a pivotal role of F3H on flavonoid metabolism improving adaptation to biotic stress in blackberry. PLoS ONE, 2020, 15, e0232626.	2.5	18
39	Title is missing!. New Forests, 2003, 25, 149-159.	1.7	17
40	Extracts from cultures of Pseudomonas fluorescens induce defensive patterns of gene expression and enzyme activity while depressing visible injury and reactive oxygen species in Arabidopsis thaliana challenged with pathogenic Pseudomonas syringae. AoB PLANTS, 2019, 11, plz049.	2.3	17
41	Improving Flavonoid Metabolism in Blackberry Leaves and Plant Fitness by Using the Bioeffector <i>Pseudomonas fluorescens</i> N 21.4 and Its Metabolic Elicitors: A Biotechnological Approach for a More Sustainable Crop. Journal of Agricultural and Food Chemistry, 2020, 68, 6170-6180.	5.2	17
42	Microbial inhibition and nitrification potential in soils incubated with <i>Elaeagnus angustifolia</i> L. Leaf Litter. Geomicrobiology Journal, 1993, 11, 149-156.	2.0	15
43	Effects of three plant growth-promoting rhizobacteria on the growth of seedlings of tomato and pepper in two different sterilized and nonsterilized peats. Archives of Agronomy and Soil Science, 2003, 49, 119-127.	2.6	15
44	Supplementing Diet with Blackberry Extract Causes a Catabolic Response with Increments in Insulin Sensitivity in Rats. Plant Foods for Human Nutrition, 2015, 70, 170-175.	3.2	15
45	Seasonal diversity changes in alder (Alnus glutinosa) culturable rhizobacterial communities throughout a phenological cycle. Applied Soil Ecology, 2005, 29, 215-224.	4.3	14
46	Characterization of the rhizosphere microbial community from different Arabidopsis thaliana genotypes using phospholipid fatty acids (PLFA) analysis. Plant and Soil, 2010, 329, 315-325.	3.7	14
47	Increased microbial activity and nitrogen mineralization coupled to changes in microbial community structure in the rhizosphere of Bt corn. Applied Soil Ecology, 2013, 68, 46-56.	4.3	13
48	Method development for determination of (+)â€catechin and (â^')â€cpicatechin by micellar electrokinetic chromatography: Annual characterization of field grown blackberries. Electrophoresis, 2013, 34, 2251-2258.	2.4	13
49	Management of Plant Physiology with Beneficial Bacteria to Improve Leaf Bioactive Profiles and Plant Adaptation under Saline Stress in Olea europea L Foods, 2020, 9, 57.	4.3	13
50	Metabolic elicitors of Pseudomonas fluorescens N 21.4 elicit flavonoid metabolism in blackberry fruit. Journal of the Science of Food and Agriculture, 2021, 101, 205-214.	3.5	12
51	Functional diversity of rhizosphere microorganisms from different genotypes of <i>Arabidopsis thaliana</i> . Community Ecology, 2009, 10, 111-119.	0.9	11
52	Biotic elicitation as a tool to improve strawberry and raspberry extract potential on metabolic syndromeâ€related enzymes in vitro. Journal of the Science of Food and Agriculture, 2019, 99, 2939-2946.	3.5	11
53	Biotechnology of the Rhizosphere. , 2009, , 137-162.		10
54	Priming fingerprint induced by <i>Bacillus amyloliquefaciens</i> QV15, a common pattern in <i>Arabidopsis thaliana</i> and in field-grown blackberry. Journal of Plant Interactions, 2018, 13, 398-408.	2.1	10

#	Article	IF	CITATIONS
55	Effects of two plant growth-promoting Rhizobacteria on the germination and growth of pepper seedlings (Capsicum Annum) CV. Roxy: Wirkung von zwei wachstumsfordernden Rhizobakterien auf die keimung und das wachstum von pfeffersaaten (Capsicum Annum) CV. Roxy. Archives of Agronomy and Soil Science, 2003, 49, 593-603.	2.6	8
56	Pseudomonas palmensis sp. nov., a Novel Bacterium Isolated From Nicotiana glauca Microbiome: Draft Genome Analysis and Biological Potential for Agriculture. Frontiers in Microbiology, 2021, 12, 672751.	3.5	8
57	Title is missing!. Plant Growth Regulation, 1997, 22, 145-149.	3.4	7
58	The Flavonol-Anthocyanin Pathway in Blackberry and Arabidopsis: State of the Art. , 0, , .		7
59	A novel strategy for rapid screening of the complex triterpene saponin mixture present in the methanolic extract of blackberry leaves (Rubus cv. Loch Ness) by UHPLC/QTOF-MS. Journal of Pharmaceutical and Biomedical Analysis, 2019, 164, 47-56.	2.8	7
60	Bioeffectors as Biotechnological Tools to Boost Plant Innate Immunity: Signal Transduction Pathways Involved. Plants, 2020, 9, 1731.	3.5	7
61	Changes of enzyme activities related to oxidative stress in rice plants inoculated with random mutants of a Pseudomonas fluorescens strain able to improve plant fitness upon biotic and abiotic conditions. Functional Plant Biology, 2017, 44, 1063.	2.1	4
62	Tomato Bio-Protection Induced by Pseudomonas fluorescens N21.4 Involves ROS Scavenging Enzymes and PRs, without Compromising Plant Growth. Plants, 2021, 10, 331.	3.5	4
63	Lipo-Chitooligosaccharides (LCOs) as Elicitors of the Enzymatic Activities Related to ROS Scavenging to Alleviate Oxidative Stress Generated in Tomato Plants under Stress by UV-B Radiation. Plants, 2022, 11, 1246.	3.5	4
64	Beneficial Microorganisms: The Best Partner to Improve Plant Adaptative Capacity. Biology and Life Sciences Forum, 2020, 4, .	0.6	1
65	Biotechnological Applications of Bioeffectors Derived From the Plant Microbiome to Improve Plant's Physiological Response for a Better Adaptation to Biotic and Abiotic Stress: Fundamentals and Case Studies. , 2021, , 102-123.		0
66	Blackberry (Rubus sp. var. Loch Ness) Extract Reduces Obesity Induced by a Cafeteria Diet and Affects the Lipophilic Metabolomic Profile in Rats. Journal of Food & Nutritional Disorders, 2014, 03, .	0.1	0
67	From Beneficial Bacteria to Microbial Derived Elicitors: Biotecnological Applications to Improve Fruit Quality. Plant in Challenging Environments, 2021, , 73-90.	0.4	0
68	Title is missing!. , 2020, 15, e0232626.		0
69	Title is missing!. , 2020, 15, e0232626.		0
70	Title is missing!. , 2020, 15, e0232626.		0
71	Title is missing!. , 2020, 15, e0232626.		0