Paul S Clegg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7314751/publications.pdf

Version: 2024-02-01

58	1,737	23	276539 41 g-index
papers	citations	h-index	
60	60	60	1708
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Symbiosis between the components of a soft composite material responding to osmotic shock: The case of three-liquid systems. Journal of Colloid and Interface Science, 2022, 608, 1135-1140.	5.0	O
2	Mixed Aqueous-and-Oil Foams via the Spinning Together of Separate Particle-Stabilized Aqueous and Oil Foams. Langmuir, 2022, 38, 4243-4249.	1.6	2
3	Effects of orientational order on modulated cylindrical interfaces. Physical Review E, 2022, 105, .	0.8	1
4	Functional enhancement of whey protein concentrate and egg by partial denaturation and co-processing. Food Bioscience, 2022, 49, 101895.	2.0	0
5	Are Langmuir Trough Studies Useful? Unexpected Emulsification Behavior Using Colloidal Rods. Journal of Physical Chemistry Letters, 2021, 12, 5241-5247.	2.1	1
6	Rheology of protein-stabilised emulsion gels envisioned as composite networks. 2 - Framework for the study of emulsion gels. Journal of Colloid and Interface Science, 2021, 594, 92-100.	5.0	8
7	Complex High-Internal Phase Emulsions that can Form Interfacial Films with Tunable Morphologies. Langmuir, 2021, 37, 9802-9808.	1.6	2
8	Characterising soft matter using machine learning. Soft Matter, 2021, 17, 3991-4005.	1.2	24
9	Influence of salt concentration on the formation of Pickering emulsions. Soft Matter, 2020, 16, 7342-7349.	1.2	16
10	Rheology of protein-stabilised emulsion gels envisioned as composite networks 1– Comparison of pure droplet gels and protein gels. Journal of Colloid and Interface Science, 2020, 579, 878-887.	5.0	11
11	Autonomous analysis to identify bijels from two-dimensional images. Soft Matter, 2020, 16, 2565-2573.	1.2	4
12	Rheological Behavior and in Situ Confocal Imaging of Bijels Made by Mixing. Langmuir, 2019, 35, 10927-10936.	1.6	13
13	Controlling the morphological evolution of a particle-stabilized binary-component system. Chemical Communications, 2019, 55, 5575-5578.	2.2	9
14	Particle-stabilized Janus emulsions that exhibit pH-tunable stability. Chemical Communications, 2019, 55, 5773-5776.	2.2	11
15	Viscosity of protein-stabilized emulsions: Contributions of components and development of a semipredictive model. Journal of Rheology, 2019, 63, 179-190.	1.3	14
16	Direct transformation of bijels into bicontinuous composite electrolytes using a pre-mix containing lithium salt. Materials Horizons, 2018, 5, 499-505.	6.4	30
17	Stable emulsions of droplets in a solid edible organogel matrix. Soft Matter, 2018, 14, 2044-2051.	1.2	25
18	3D assembly of Ti ₃ C ₂ -MXene directed by water/oil interfaces. Nanoscale, 2018, 10, 3621-3625.	2.8	98

#	Article	IF	Citations
19	Compositional ripening of particle-stabilized drops in a three-liquid system. Soft Matter, 2018, 14, 3783-3790.	1.2	9
20	Controlling the Organization of Colloidal Sphero-Cylinders Using Confinement in a Minority Phase. Gels, 2018, 4, 15.	2.1	1
21	Molecular Interactions behind the Self-Assembly and Microstructure of Mixed Sterol Organogels. Langmuir, 2018, 34, 8629-8638.	1.6	32
22	Mixing Time, Inversion and Multiple Emulsion Formation in a Limonene and Water Pickering Emulsion. Frontiers in Chemistry, 2018, 6, 132.	1.8	12
23	Sprouting Droplets Driven by Physical Effects Alone. Langmuir, 2017, 33, 4235-4241.	1.6	3
24	Microstructure of Î ² -Sitosterol:Î ³ -Oryzanol Edible Organogels. Langmuir, 2017, 33, 4537-4542.	1.6	61
25	Bijels formed by direct mixing. Soft Matter, 2017, 13, 4824-4829.	1.2	51
26	The development of phytosterol-lecithin mixed micelles and organogels. Food and Function, 2017, 8, 4547-4554.	2.1	29
27	Stabilizing bubble and droplet interfaces using dipeptide hydrogels. Organic and Biomolecular Chemistry, 2017, 15, 6342-6348.	1.5	24
28	Longâ€Lived Foams Stabilized by a Hydrophobic Dipeptide Hydrogel. Advanced Materials Interfaces, 2016, 3, 1500601.	1.9	26
29	Compressing a spinodal surface at fixed area: bijels in a centrifuge. Soft Matter, 2016, 12, 4375-4383.	1.2	16
30	The secret life of Pickering emulsions: particle exchange revealed using two colours of particle. Scientific Reports, 2016, 6, 31401.	1.6	63
31	Using a Molecular Stopwatch to Study Particle Uptake in Pickering Emulsions. Langmuir, 2016, 32, 6387-6397.	1.6	8
32	One-step production of multiple emulsions: microfluidic, polymer-stabilized and particle-stabilized approaches. Soft Matter, 2016, 12, 998-1008.	1.2	86
33	Stabilizing bijels using a mixture of fumed silica nanoparticles. Chemical Communications, 2015, 51, 16984-16987.	2.2	36
34	Particleâ€Stabilized Water Droplets that Sprout Millimeterâ€Scale Tubes. Angewandte Chemie - International Edition, 2015, 54, 1456-1460.	7.2	17
35	Bijels stabilized using rod-like particles. Soft Matter, 2015, 11, 4351-4355.	1.2	31
36	Temperature- and pH-Dependent Shattering: Insoluble Fatty Ammonium Phosphate Films at Water–Oil Interfaces. Langmuir, 2015, 31, 9312-9324.	1.6	19

#	Article	IF	Citations
37	Making and breaking bridges in a Pickering emulsion. Journal of Colloid and Interface Science, 2015, 441, 30-38.	5.0	102
38	Drop-Casting Hydrogels at a Liquid Interface: The Case of Hydrophobic Dipeptides. Langmuir, 2014, 30, 13854-13860.	1.6	25
39	Cracking in films of titanium dioxide nanoparticles with varying interaction strength. Journal of Colloid and Interface Science, 2014, 417, 317-324.	5.0	5
40	Assembling cellular networks of colloids via emulsions of partially miscible liquids: a compositional approach. Materials Horizons, 2014, 1, 360-364.	6.4	5
41	Making Non-aqueous High Internal Phase Pickering Emulsions: Influence of Added Polymer and Selective Drying. ACS Applied Materials & Selective Drying.	4.0	41
42	Colloidal Aggregation in Mixtures of Partially Miscible Liquids by Shear-Induced Capillary Bridges. Langmuir, 2014, 30, 5763-5770.	1.6	11
43	Relationship between high internal-phase Pickering emulsions and catastrophic inversion. Soft Matter, 2013, 9, 7042.	1.2	22
44	Yielding and flow of concentrated Pickering emulsions. Soft Matter, 2013, 9, 7568.	1,2	48
45	Squeezing particle-stabilized emulsions into biliquid foams – equation of state. Soft Matter, 2013, 9, 7757.	1.2	15
46	Making a Robust Interfacial Scaffold: Bijel Rheology and its Link to Processability. Advanced Functional Materials, 2013, 23, 417-423.	7.8	77
47	Simple Synthesis of Versatile Akaganéite-Silica Core–Shell Rods. Chemistry of Materials, 2012, 24, 3449-3457.	3.2	20
48	Colloidal particles at the interface between an isotropic liquid and a chiral liquid crystal. Soft Matter, 2012, 8, 8422.	1,2	23
49	Particle-stabilized oscillating diver: a self-assembled responsive capsule. Soft Matter, 2011, 7, 7969.	1.2	14
50	How do (fluorescent) surfactants affect particle-stabilized emulsions?. Soft Matter, 2011, 7, 7965.	1.2	32
51	Novel, Robust, and Versatile Bijels of Nitromethane, Ethanediol, and Colloidal Silica: Capsules, Subâ€Tenâ€Micrometer Domains, and Mechanical Properties. Advanced Functional Materials, 2011, 21, 2020-2027.	7.8	80
52	Bijel Capsules: Novel, Robust, and Versatile Bijels of Nitromethane, Ethanediol, and Colloidal Silica: Capsules, Sub-Ten-Micrometer Domains, and Mechanical Properties (Adv. Funct. Mater. 11/2011). Advanced Functional Materials, 2011, 21, 1949-1949.	7.8	3
53	Inversion of particle-stabilized emulsions of partially miscible liquids by mild drying of modified silica particles. Journal of Colloid and Interface Science, 2011, 359, 126-135.	5.0	57
54	Demixing, remixing and cellular networks in binary liquids containing colloidal particles. Soft Matter, 2010, 6, 1182.	1.2	8

Paul S Clegg

#	Article	IF	CITATION
55	Colloidal Gels Assembled via a Temporary Interfacial Scaffold. Physical Review Letters, 2009, 103, 255502.	2.9	60
56	Bijels: a new class of soft materials. Soft Matter, 2008, 4, 2132.	1.2	209
57	Emulsification of Partially Miscible Liquids Using Colloidal Particles:Â Nonspherical and Extended Domain Structures. Langmuir, 2007, 23, 5984-5994.	1.6	73
58	X-ray studies of the phases and phase transitions of liquid crystals. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, 112-121.	0.3	14