
Ghislaine Hilbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7314369/publications.pdf Version: 2024-02-01

CHISLAINE HILBEDT

#	Article	IF	CITATIONS
1	Ecophysiological, Genetic, and Molecular Causes of Variation in Grape Berry Weight and Composition: A Review. American Journal of Enology and Viticulture, 2011, 62, 413-425.	1.7	205
2	Microclimate Influence on Mineral and Metabolic Profiles of Grape Berries. Journal of Agricultural and Food Chemistry, 2006, 54, 6765-6775.	5.2	188
3	1H NMR metabolite fingerprints of grape berry: Comparison of vintage and soil effects in Bordeaux grapevine growing areas. Analytica Chimica Acta, 2006, 563, 346-352.	5.4	159
4	Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine. Environmental and Experimental Botany, 2007, 59, 139-149.	4.2	156
5	1H NMR and Chemometrics To Characterize Mature Grape Berries in Four Wine-Growing Areas in Bordeaux, France. Journal of Agricultural and Food Chemistry, 2005, 53, 6382-6389.	5.2	137
6	Ultraviolet-B radiation modifies the quantitative and qualitative profile of flavonoids and amino acids in grape berries. Phytochemistry, 2014, 102, 106-114.	2.9	130
7	Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation. Journal of Experimental Botany, 2013, 65, 4665-4677.	4.8	128
8	Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries. Phytochemistry, 2014, 103, 38-49.	2.9	123
9	Anthocyanin identification and composition of wild Vitis spp. accessions by using LC–MS and LC–NMR. Analytica Chimica Acta, 2012, 732, 145-152.	5.4	113
10	Dissecting the Biochemical and Transcriptomic Effects of a Locally Applied Heat Treatment on Developing Cabernet Sauvignon Grape Berries. Frontiers in Plant Science, 2017, 8, 53.	3.6	105
11	Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines. Frontiers in Plant Science, 2015, 06, 382.	3.6	95
12	Water limitation and rootstock genotype interact to alter grape berry metabolism through transcriptome reprogramming. Horticulture Research, 2015, 2, 15012.	6.3	94
13	Modified Atmosphere Packaging of Fresh, "Ready-to-use" Grated Carrots in Polymeric Films. Journal of Food Science, 1990, 55, 1033-1038.	3.1	91
14	Anthocyanin biosynthesis is differentially regulated by light in the skin and flesh of white-fleshed and teinturier grape berries. Planta, 2016, 243, 23-41.	3.2	91
15	Tempranillo clones differ in the response of berry sugar and anthocyanin accumulation to elevated temperature. Plant Science, 2018, 267, 74-83.	3.6	81
16	Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry. Frontiers in Plant Science, 2016, 7, 1134.	3.6	74
17	Transcriptional and metabolic alternations rebalance wheat grain storage protein accumulation under variable nitrogen and sulfur supply. Plant Journal, 2015, 83, 326-343.	5.7	57
18	Flavonoid and amino acid profiling on Vitis vinifera L. cv Tempranillo subjected to deficit irrigation under elevated temperatures. Journal of Food Composition and Analysis, 2017, 62, 51-62.	3.9	49

GHISLAINE HILBERT

#	Article	IF	CITATIONS
19	Flavonol profiles in berries of wild Vitis accessions using liquid chromatography coupled to mass spectrometry and nuclear magnetic resonance spectrometry. Food Chemistry, 2015, 169, 49-58.	8.2	47
20	Diversity of anthocyanins and other phenolic compounds among tropical root crops from Vanuatu, South Pacific. Journal of Food Composition and Analysis, 2011, 24, 315-325.	3.9	42
21	Constraint-Based Modeling Highlights Cell Energy, Redox Status and α-Ketoglutarate Availability as Metabolic Drivers for Anthocyanin Accumulation in Grape Cells Under Nitrogen Limitation. Frontiers in Plant Science, 2018, 9, 421.	3.6	42
22	High Temperature and Elevated Carbon Dioxide Modify Berry Composition of Different Clones of Grapevine (Vitis vinifera L.) cv. Tempranillo. Frontiers in Plant Science, 2020, 11, 603687.	3.6	37
23	The yeast flora of stored readyâ€ŧoâ€use carrots and their role in spoilage. International Journal of Food Science and Technology, 1992, 27, 473-484.	2.7	36
24	Growth performance and carbon partitioning of grapevine Tempranillo clones under simulated climate change scenarios: Elevated CO2 and temperature. Journal of Plant Physiology, 2020, 252, 153226.	3.5	33
25	Effect of water stress and rootstock genotype on Pinot Noir berry composition. Australian Journal of Grape and Wine Research, 2014, 20, 409-421.	2.1	30
26	Vine nitrogen status and volatile thiols and their precursors from plot to transcriptome level. BMC Plant Biology, 2016, 16, 173.	3.6	26
27	Metabolite profiling during graft union formation reveals the reprogramming of primary metabolism and the induction of stilbene synthesis at the graft interface in grapevine. BMC Plant Biology, 2019, 19, 599.	3.6	26
28	Impact of grapevine age on water status and productivity of Vitis vinifera L. cv. Riesling. European Journal of Agronomy, 2019, 104, 1-12.	4.1	21
29	Vine Nitrogen Status Does Not Have a Direct Impact on 2-Methoxy-3-isobutylpyrazine in Grape Berries and Wines. Journal of Agricultural and Food Chemistry, 2015, 63, 9789-9802.	5.2	18
30	Nested effects of berry half, berry and bunch microclimate on biochemical composition in grape. Oeno One, 2016, 50, 23.	1.4	18
31	Ion chromatography methods for the simultaneous determination of mineral anions in plant sap. Journal of Chromatography A, 1996, 752, 298-303.	3.7	17
32	Cluster shading modifies amino acids in grape (Vitis vinifera L.) berries in a genotype- and tissue-dependent manner. Food Research International, 2017, 98, 2-9.	6.2	17
33	Aminoacids and Flavonoids Profiling in Tempranillo Berries Can Be Modulated by the Arbuscular Mycorrhizal Fungi. Plants, 2019, 8, 400.	3.5	16
34	Anthocyanin Phytochemical Profiles and Antiâ€oxidant Activities of <i>Vitis candicans</i> and <i>Vitis doaniana</i> . Phytochemical Analysis, 2013, 24, 446-452.	2.4	14
35	Hierarchy of Factors Impacting Grape Berry Mass: Separation of Direct and Indirect Effects on Major Berry Metabolites. American Journal of Enology and Viticulture, 2018, 69, 103-112.	1.7	14
36	Characterization of Stilbene Composition in Grape Berries from Wild <i>Vitis</i> Species in Year-To-Year Harvest. Journal of Agricultural and Food Chemistry, 2020, 68, 13408-13417.	5.2	12

GHISLAINE HILBERT

#	Article	IF	CITATIONS
37	Impact of 2100-Projected Air Temperature, Carbon Dioxide, and Water Scarcity on Grape Primary and Secondary Metabolites of Different <i>Vitis vinifera</i> cv. Tempranillo Clones. Journal of Agricultural and Food Chemistry, 2021, 69, 6172-6185.	5.2	12
38	Regulation of anthocyanin and sugar accumulation in grape berry through carbon limitation and exogenous ABA application. Food Research International, 2022, 160, 111478.	6.2	12
39	Metabolite analysis reveals distinct spatio-temporal accumulation of anthocyanins in two teinturier variants of cv. †Gamay' grapevines (Vitis vinifera L.). Planta, 2021, 253, 84.	3.2	10
40	Effect of vine nitrogen status, grapevine variety and rootstock on the levels of berry S-glutathionylated and S-cysteinylated precursors of 3-sulfanylhexan-1-ol. Oeno One, 2015, 49, 253.	1.4	7
41	Zebularine, a DNA Methylation Inhibitor, Activates Anthocyanin Accumulation in Grapevine Cells. Genes, 2022, 13, 1256.	2.4	3
42	Is Tempranillo Blanco Grapevine Different from Tempranillo Tinto Only in the Color of the Grapes? An Updated Review. Plants, 2022, 11, 1662.	3.5	1
43	VineyardFACE: Investigation of a moderate (+20 %) increase of ambient CO ₂ concentration on berry ripening dynamics and fruit composition of Cabernet-Sauvignon. Oeno One, 2022, 56, 193-204	1.4	Ο