Peter Sarkies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7314347/publications.pdf

Version: 2024-02-01

55 papers	4,486 citations	28 h-index	197535 49 g-index
69 all docs	69 docs citations	69 times ranked	5375 citing authors

#	Article	IF	CITATIONS
1	Encyclopaedia of eukaryotic DNA methylation: from patterns to mechanisms and functions. Biochemical Society Transactions, 2022, , .	1.6	8
2	Transcription and DNA Methylation Patterns of Blood-Derived CD8+ T Cells Are Associated With Age and Inflammatory Bowel Disease But Do Not Predict Prognosis. Gastroenterology, 2021, 160, 232-244.e7.	0.6	42
3	Lentiviral transduction facilitates RNA interference in the nematode parasite Nippostrongylus brasiliensis. PLoS Pathogens, 2021, 17, e1009286.	2.1	8
4	The RNA polymerase II subunit RPBâ€9 recruits the integrator complex to terminate <i>Caenorhabditis elegans</i> piRNA transcription. EMBO Journal, 2021, 40, e105565.	3.5	19
5	Networkâ€based visualisation reveals new insights into transposable element diversity. Molecular Systems Biology, 2021, 17, e9600.	3.2	2
6	Integrator is recruited to promoterâ€proximally paused RNA Pol II to generate <i>Caenorhabditis elegans</i> piRNA precursors. EMBO Journal, 2021, 40, e105564.	3.5	25
7	DNA methylation and sexual dimorphism: new insights from mealybugs. Molecular Ecology, 2021, 30, 5621-5623.	2.0	1
8	Malignancy and NF-κB signalling strengthen coordination between expression of mitochondrial and nuclear-encoded oxidative phosphorylation genes. Genome Biology, 2021, 22, 328.	3.8	7
9	Molecular mechanisms of epigenetic inheritance: Possible evolutionary implications. Seminars in Cell and Developmental Biology, 2020, 97, 106-115.	2.3	61
10	Long-term experimental evolution reveals purifying selection on piRNA-mediated control of transposable element expression. BMC Biology, 2020, 18, 162.	1.7	10
11	Epimutations driven by small RNAs arise frequently but most have limited duration in Caenorhabditis elegans. Nature Ecology and Evolution, 2020, 4, 1539-1548.	3.4	33
12	Altered DNA methylation profiles in blood from patients with sporadic Creutzfeldt–Jakob disease. Acta Neuropathologica, 2020, 140, 863-879.	3.9	18
13	ÂÂÂÂÂÂWidespread conservation and lineage-specific diversification of genome-wide DNA methylation patterns across arthropods. PLoS Genetics, 2020, 16, e1008864.	1.5	56
14	Trichinella spiralis secretes abundant unencapsulated small RNAs with potential effects on host gene expression. International Journal for Parasitology, 2020, 50, 697-705.	1.3	10
15	Title is missing!. , 2020, 16, e1008864.		O
16	Title is missing!. , 2020, 16, e1008864.		0
17	Title is missing!. , 2020, 16, e1008864.		O
18	Title is missing!. , 2020, 16, e1008864.		O

#	Article	IF	Citations
19	Title is missing!. , 2020, 16, e1008864.		О
20	Title is missing!. , 2020, 16, e1008864.		0
21	EvoChromo: towards a synthesis of chromatin biology and evolution. Development (Cambridge), 2019, 146, .	1.2	16
22	Comparative Epigenomics Reveals that RNA Polymerase II Pausing and Chromatin Domain Organization Control Nematode piRNA Biogenesis. Developmental Cell, 2019, 48, 793-810.e6.	3.1	37
23	Mechanistic Insights into Cytosine-N3 Methylation by DNA Methyltransferase DNMT3A. Journal of Molecular Biology, 2019, 431, 3139-3145.	2.0	17
24	PETISCO is a novel protein complex required for 21U RNA biogenesis and embryonic viability. Genes and Development, 2019, 33, 857-870.	2.7	34
25	The meiotic phosphatase GSP-2/PP1 promotes germline immortality and small RNA-mediated genome silencing. PLoS Genetics, 2019, 15, e1008004.	1.5	5
26	Natural Infection of C.Âelegans by an Oomycete Reveals a New Pathogen-Specific Immune Response. Current Biology, 2018, 28, 640-648.e5.	1.8	48
27	Evolutionary analysis indicates that DNA alkylation damage is a byproduct of cytosine DNA methyltransferase activity. Nature Genetics, 2018, 50, 452-459.	9.4	71
28	Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements. Nature Ecology and Evolution, 2018, 2, 174-181.	3.4	214
29	The piRNA pathway responds to environmental signals to establish intergenerational adaptation to stress. BMC Biology, 2018, 16, 103.	1.7	43
30	An Alternative STAT Signaling Pathway Acts in Viral Immunity in <i>Caenorhabditis elegans</i> . MBio, 2017, 8, .	1.8	38
31	Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways. PLoS Pathogens, 2016, 12, e1005536.	2.1	79
32	Specific down-regulation of spermatogenesis genes targeted by 22G RNAs in hybrid sterile males associated with an X-Chromosome introgression. Genome Research, 2016, 26, 1219-1232.	2.4	25
33	The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion. ELife, 2016, 5, .	2.8	130
34	E. coli OxyS non-coding RNA does not trigger RNAi in C. elegans. Scientific Reports, 2015, 5, 9597.	1.6	18
35	Antiviral RNA Interference against Orsay Virus Is neither Systemic nor Transgenerational in Caenorhabditis elegans. Journal of Virology, 2015, 89, 12035-12046.	1.5	47
36	Ancient and Novel Small RNA Pathways Compensate for the Loss of piRNAs in Multiple Independent Nematode Lineages. PLoS Biology, 2015, 13, e1002061.	2.6	118

#	Article	IF	Citations
37	Tertiary siRNAs Mediate Paramutation in C. elegans. PLoS Genetics, 2015, 11, e1005078.	1.5	98
38	PRDE-1 is a nuclear factor essential for the biogenesis of Ruby motif-dependent piRNAs in <i>C. elegans</i> . Genes and Development, 2014, 28, 783-796.	2.7	72
39	Determinants of G quadruplexâ€induced epigenetic instability in <scp>REV</scp> 1â€deficient cells. EMBO Journal, 2014, 33, 2507-2520.	3.5	111
40	Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nature Neuroscience, 2014, 17, 667-669.	7.1	1,067
41	Histone H3.3 Is Required to Maintain Replication Fork Progression after UV Damage. Current Biology, 2014, 24, 2195-2201.	1.8	53
42	Caenorhabditis elegans RSD-2 and RSD-6 promote germ cell immortality by maintaining small interfering RNA populations. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4323-E4331.	3.3	44
43	Small RNAs break out: the molecular cell biology of mobile small RNAs. Nature Reviews Molecular Cell Biology, 2014, 15, 525-535.	16.1	122
44	Reduced Insulin/IGF-1 Signaling Restores Germ Cell Immortality to Caenorhabditis elegans Piwi Mutants. Cell Reports, 2014, 7, 762-773.	2.9	115
45	Is There Social RNA?. Science, 2013, 341, 467-468.	6.0	47
46	Competition between virus-derived and endogenous small RNAs regulates gene expression in <i>Caenorhabditis elegans</i> . Genome Research, 2013, 23, 1258-1270.	2.4	75
47	RNAi pathways in the recognition of foreign RNA: antiviral responses and host–parasite interactions in nematodes. Biochemical Society Transactions, 2013, 41, 876-880.	1.6	23
48	A deletion polymorphism in the Caenorhabditis elegans RIG-I homolog disables viral RNA dicing and antiviral immunity. ELife, 2013, 2, e00994.	2.8	156
49	FANCJ coordinates two pathways that maintain epigenetic stability at G-quadruplex DNA. Nucleic Acids Research, 2012, 40, 1485-1498.	6.5	184
50	piRNAs Can Trigger a Multigenerational Epigenetic Memory in the Germline of C.Âelegans. Cell, 2012, 150, 88-99.	13.5	673
51	Cellular epigenetic stability and cancer. Trends in Genetics, 2012, 28, 118-127.	2.9	47
52	Propagation of histone marks and epigenetic memory during normal and interrupted DNA replication. Cellular and Molecular Life Sciences, 2012, 69, 697-716.	2.4	18
53	Epigenetic Instability due to Defective Replication of Structured DNA. Molecular Cell, 2010, 40, 703-713.	4.5	259
54	Motogenic Sites in Human Fibronectin Are Masked by Long Range Interactions. Journal of Biological Chemistry, 2009, 284, 15668-15675.	1.6	46

#	Article	IF	CITATIONS
55	Genetic selection of activatory mutations in KcsA. Channels, 2008, 2, 413-418.	1.5	14